100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
First Course in Abstract Algebra A, 8th Edition Solution Manual by John B. Fraleigh, All Chapters 1 - 56, Complete, Verified Latest Version $17.99
Add to cart

Exam (elaborations)

First Course in Abstract Algebra A, 8th Edition Solution Manual by John B. Fraleigh, All Chapters 1 - 56, Complete, Verified Latest Version

 32 views  0 purchase
  • Course
  • First Course in Abstract Algebra A
  • Institution
  • First Course In Abstract Algebra A

First Course in Abstract Algebra A, 8th Edition Solution Manual by John B. Fraleigh, All Chapters 1 - 56, Complete, Verified Latest Version Solution Manual for First Course in Abstract Algebra A, 8th Edition by John B. Fraleigh, Verified Chapters 1 - 56, Complete Newest Version Solution Manu...

[Show more]

Preview 4 out of 193  pages

  • March 5, 2024
  • 193
  • 2023/2024
  • Exam (elaborations)
  • Questions & answers
book image

Book Title:

Author(s):

  • Edition:
  • ISBN:
  • Edition:
  • First Course in Abstract Algebra A
  • First Course in Abstract Algebra A
avatar-seller
LectWoody
SOLUTION MANUAL
First Course in Abstract Algebra A
8th Edition by John B. Fraleigh
All Chapters Full Complete
1 / 4



CONTENTS

0. Sets and Relations 1
I. Groups and Subgroups
1. Introduction and Examples 4
2. Binary Operations 7
3. Isomorphic Binary Structures 9
4. Groups 13
5. Subgroups 17
6. Cyclic Groups 21
7. Generators and Cayley Digraphs 24

II. Permutations, Cosets, and Direct Products
8. Groups of Permutations 26
9. Orbits, Cycles, and the Alternating Groups 30
10. Cosets and the Theorem of Lagrange 34
11. Direct Products and Finitely Generated Abelian Groups 37
12. Plane Isometries 42

III. Homomorphisms and Factor Groups
13. Homomorphisms 44
14. Factor Groups 49
15. Factor -Group Computations and Simple Groups 53
16. Group Action on a Set 58
17. Applications of G-Sets to Counting 61

IV. Rings and Fields
18. Rings and Fields 63
19. Integral Domains 68
20. Fermat’s and Euler’s Theorems 72
21. The Field of Quotients of an Integral Domain 74
22. Rings of Polynomials 76
23. Factorization of Polynomials over a Field 79
24. Noncommutative Examples 85
25. Ordered Rings and Fields 87

V. Ideals and Factor Rings
26. Homomorphisms and Factor Rings 89
27. Prime and Maximal Ideals 94
28. Gro¨bner Bases for Ideals 99

2 / 4

VI. Extension Fields

29. Introduction to Extension Fields 103
30. Vector Spaces 107
31. Algebraic Extensions 111
32. Geometric Constructions 115
33. Finite Fields 116

VII. Advanced Group Theory

34. Isomorphism Theorems 117
35. Series of Groups 119
36. Sylow Theorems 122
37. Applications of the Sylow Theory 124
38. Free Abelian Groups 128
39. Free Groups 130
40. Group Presentations 133

VIII. Groups in Topology

41. Simplicial Complexes and Homology Groups 136
42. Computations of Homology Groups 138
43. More Homology Computations and Applications 140
44. Homological Algebra 144

IX. Factorization
45. Unique Factorization Domains 148
46. Euclidean Domains 151
47. Gaussian Integers and Multiplicative Norms 154

X. Automorphisms and Galois Theory
48. Automorphisms of Fields 159
49. The Isomorphism Extension Theorem 164
50. Splitting Fields 165
51. Separable Extensions 167
52. Totally Inseparable Extensions 171
53. Galois Theory 173
54. Illustrations of Galois Theory 176
55. Cyclotomic Extensions 183
56. Insolvability of the Quintic 185

APPENDIX Matrix Algebra 187

iv
3 / 4

2 → − 0. Sets and Relations 1

0. Sets and Relations
1. {√
3, −√
3} 2. The set is empty.
3. {1, −1, 2, −2, 3, −3, 4, −4, 5, −5, 6, −6, 10, −10, 12, −12, 15, −15, 20, −20, 30, −30,
60, −60}
4. {−10, −9, −8, −7, −6, −5, −4, −3, −2, −1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}
5. It is not a well -defined set. (Some may argue that no element of Z+ is large, because every element
exceeds only a finite number of other elements but is exceeded by an infinite number of other elements.
Such people might claim the answer should be ∅.)
6. ∅ 7. The set is ∅ because 33 = 27 and 43 = 64.
8. It is not a well -defined set. 9. Q
10. The set containing all numbers that are (positive, negative, or zero) integer multiples of 1, 1/2, or
1/3.
11. {(a, 1), (a, 2), (a, c), (b, 1), (b, 2), (b, c), (c, 1), (c, 2), (c, c)}
12. a. It is a function. It is not one-to-one since there are two pairs with second member 4. It is not onto
B because there is no pair with second member 2.
b. (Same answer as Part( a).)
c. It is not a function because there are two pairs with first member 1.
d. It is a function. It is one-to-one. It is onto B because every element of B appears as second
member of some pair.
e. It is a function. It is not one-to-one because there are two pairs with second member 6. It is not
onto B because there is no pair with second member 2.
f. It is not a function because there are two pairs with first member 2.
13. Draw the line through P and x, and let y be its point of intersection with the line segment CD.
14. a. φ : [0, 1] → [0, 2] where φ(x) = 2x b. φ : [1, 3] → [5, 25] where φ(x) = 5 + 10(x − 1)
c. φ : [a, b] [c, d] where φ(x) = c + d−c (x a)
b−a
15. Let φ : S → R be defined by φ(x) = tan( π(x − 1 )).
16. a. ∅; cardinality 1 b. ∅, {a}; cardinality 2 c. ∅, {a}, {b}, {a, b}; cardinality 4
d. ∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}; cardinality 8
17. Conjecture: |P(A)| = 2s = 2|A|.
Proof The number of subsets of a set A depends only on the cardinality of A, not on what the
elements of A actually are. Suppose B = {1, 2, 3, · · · , s − 1} and A = {1, 2, 3, , s}. Then A has all
the elements of B plus the one additional element s. All subsets of B are also subsets of A; these
are precisely the subsets of A that do not contain s, so the number of subsets of A not containing
s is |P(B)|. Any other subset of A must contain s, and removal of the s would produce a subset of
B. Thus the number of subsets of A containing s is also |P(B)|. Because every subset of A either
contains s or does not contain s (but not both), we see that the number of subsets of A is 2|P(B)|.
Powered by TCPDF (www.tcpdf.org)
4 / 4

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller LectWoody. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $17.99. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

50990 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 15 years now

Start selling
$17.99
  • (0)
Add to cart
Added