100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
grand oral $7.91
Add to cart

Presentation

grand oral

 12 views  0 purchase
  • Course
  • Institution

Comment l'architecte intègre-t-il le nombre d'or pour créer un bâtiment plus esthétique selon sa vision ?

Preview 1 out of 3  pages

  • March 5, 2024
  • 3
  • 2023/2024
  • Presentation
  • Unknown
  • Secondary school
  • High school
  • 1
avatar-seller
Comment l'architecte intègre-t-il le nombre d'or
pour créer un bâtiment esthétique selon sa vision
?
Intro :

Mon intérêt, pour l’architecture et les mathématiques m’ont amené à penser à un sujet,
traitant du nombre d’or.
Ainsi durant cette présentation nous verrons : comment l’architecte intègre il le nombre d'or
pour créer un bâtiment esthétique selon sa vision ?
Pour cela, nous étudierons le nombre d’or puis ses propriétés géométriques utilisées en
architecture.
Mais tout d’abord, un peu d’histoires des mathématiques avec Luca Pacioli et Euclide.

Partie 1 définitions (qu’est que le nombre d’or ?)

En 1509, le frère Luca Pacioli fit apparaître un livre intitulé des Divina Proportionne. Ce que
Pacioli appelle la divine proportion et le rapport qu'entretiennent entre elles 2 quantités
dans l'une et environ 1,618 fois plus grande que l'autre. Ce nombre, généralement noté par
la lettre grecque φ (phi) en référence au sculpteur Phidias du Parthénon, s’appelle depuis le
dix-neuvième siècle le nombre d'or. On en retrouve la première définition formelle, 300 ans
avant notre ère, dans les Éléments d’Euclide. Pour vous expliquer simplement la propriété
du nombre d’or :

Imaginez un segment de longueur 1 et multipliez-le par phi vous obtenais donc un deuxième
segment dont la longueur vaut approximativement 1,618 puis prenez ce deuxième segment
et multipliez le son tour par phi vous obtenez donc un troisième segment dont la longueur
vaut phi x phi c’est-à-dire à peu près 2,618 qui est aussi égal à 1 + phi cela suffit à découvrir
la valeur exacte du nombre. En effet on sait que ϕ^2 = 1+ϕ donc ϕ^2-1-ϕ=0
On peut voir que cela est équation du second degré qui se résout tout simplement par :
∆ = b2 – 4ac <=> 12 – 4x (-1) x 1<=> 1 + 4 = 5
donc le discriminent vaut 1 est la racine positive est phi.


C'est un nb irrationnel et infinie qui est environ égal à 1,618033988749. Il s'agit du seul
nombre positif dans le Carré est égal à lui-même augmenté de 1.


Le rectangle d’or

C’est segment vu précédemment peuvent faire la longueur d'un rectangle. On obtient alors
un rectangle d'or. La propriété du segment se traduit alors de la façon suivante. Si on
découpe un carré dans un rectangle d'or, alors le petit rectangle qui reste est également d’or.
Ce rectangle est considéré par certains artistes comme particulièrement harmonieux. Sa
forme ni trop carré ni trop allongée, leur apparaît être la plus équilibré et la plus agréable à
contempler.

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller lrndanc. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $7.91. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

51036 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 15 years now

Start selling
$7.91
  • (0)
Add to cart
Added