100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Prüfungsaufgaben + Musterlösung Matrizen HM1 $7.56
Add to cart

Other

Prüfungsaufgaben + Musterlösung Matrizen HM1

 4 views  0 purchase
  • Course
  • Institution

Dieses Dokument bietet eine umfangreiche Sammlung von Aufgaben und Lösungen im Bereich der Matrizen, speziell konzipiert für Studierende im Bachelor of Engineering (B.Eng.) Studiengang. Matrizen sind ein grundlegendes Konzept in der linearen Algebra und spielen eine entscheidende Rolle in verschi...

[Show more]

Preview 2 out of 15  pages

  • March 8, 2024
  • 15
  • 2023/2024
  • Other
  • Unknown
avatar-seller
4.Übungsblatt



1. Aufgabe

Gegeben sind die Matrizen
0 1 0 1 0 1
2 7 5 0 3 1 2 1 3 4 2 1 3
B 1 3 0 4 1 C B 2 0 2 5 0 C B 0 3 0 C
B C B C B C
A=B C
B 5 2 3 5 0 C, B = B
B 4 3 7 5 2 C und C = B
C B 1 2 5 C.
C
@ 6 1 2 1 3 A @ 3 1 2 2 3 A @ 3 2 2 A
1 0 1 3 7 1 4 6 3 0 7 5 1

Zeigen Sie, dass A · C + B · C = (A + B) · C gilt.



2. Aufgabe

Gegeben sind die Matrizen
0 1 0 1
1 1 0 ✓ ◆ 1 4 2
1 4 2
A = @ 2 3 5 A, B = , C=@ 0 1 1 A
4 0 3
0 1 4 3 2 5
✓ ◆
1 0
und D = .
0 1

Berechnen Sie alle möglichen Matrizenprodukte.

Ergebnisse:
0 1 0 1 0 1
1 4 5 1 5 1 7 11 12
A·A = @ 8 12 35 A , A·C = @ 17 5 32 A , C·A = @ 2 4 9 A,
2 7 21 12 9 21 7 8 30
✓ ◆ ✓ ◆ ✓ ◆
7 15 28 5 12 12 1 4 2
B·A = , B·C = , D·B = ,
4 1 12 13 10 23 4 0 3
0 1
7 4 8 ✓ ◆
1 0
C ·C =@ 3 3 6 A, D·D = .
0 1
18 0 33

, 3. Aufgabe

Berechnen Sie die folgenden Determinanten:

a) mit der Definition
1 2 5 7
6 1 0 3
D=
2 4 10 14
0 3 5 8

b) indem Sie die Matrix zuerst in eine obere Dreiecksmatrix umformen
1 2 0 0 0
3 2 3 0 0
D= 0 4 3 4 0
0 0 5 4 5
0 0 0 6 5

c) indem Sie die Matrix geeignet umformen
1 2 3 0
0 1 2 3
D=
3 0 1 2
2 3 0 1

d) indem Sie die Matrix geeignet umformen
1 1 0 0 1
0 3 41 17 99
D= 0 0 2 3 24
0 0 0 1 8
2 2 0 0 2

Ergebnisse:
a) D = 0 b) D = 640 c) D = 96 d) D = 24


Wiederholung Komplexe Zahlen:
Alte Klausuraufgabe
p !
2 3 5i 3 p
Gegeben ist die komplexe Zahl z = p 3 3i .
3 3+i

a) Berechnen Sie Real- und Imaginärteil von z.

b) Berechnen Sie alle Lösungen w 2 C der Gleichung w3 + i · ei 2 = 0 und geben
Sie diese in kartesischer Form an.


Ergebnisse:
p 1 1p 1 1p
a)z = 3 i5 b) w0 = 1, w1 = +i 3, w2 = i 3
2 2 2 2

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller Fabian1998. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $7.56. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

56326 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 14 years now

Start selling
$7.56
  • (0)
Add to cart
Added