100% Zufriedenheitsgarantie Sofort verfügbar nach Zahlung Sowohl online als auch als PDF Du bist an nichts gebunden 4,6 TrustPilot
logo-home
Notizen

Introduction to Linear Optimization Solution Manual PDF

Bewertung
-
Verkauft
21
seiten
20
Hochgeladen auf
13-03-2024
geschrieben in
2023/2024

Complete Answers Solutions Manual PDF for Introduction to Linear Optimization by Dimitris Bertsimas and John N. Tsitsiklis. Includes the answers for all the exercises of the book.

Hochschule
Kurs










Ups! Dein Dokument kann gerade nicht geladen werden. Versuch es erneut oder kontaktiere den Support.

Verknüpftes buch

Schule, Studium & Fach

Hochschule
Kurs

Dokument Information

Hochgeladen auf
13. märz 2024
Anzahl der Seiten
20
geschrieben in
2023/2024
Typ
Notizen
Professor(en)
Luis solari
Enthält
Alle klassen

Themen

Inhaltsvorschau

Solution Manual For:
Introduction to Linear Optimization
by Dimitris Bertsimas & John N. Tsitsiklis

John L. Weatherwax∗


November 22, 2007




Introduction

Acknowledgements

Special thanks to Dave Monet for helping find and correct various typos in these solutions.



Chapter 1 (Introduction)

Exercise 1.1

Since f (·) is convex we have that

f (λx + (1 − λ)y) ≤ λf (x) + (1 − λ)f (y) . (1)

Since f (·) is concave we also have that

f (λx + (1 − λ)y) ≥ λf (x) + (1 − λ)f (y) . (2)

Combining these two expressions we have that f must satisfy each with equality or

f (λx + (1 − λ)y) = λf (x) + (1 − λ)f (y) . (3)

This implies that f must be linear and the expression given in the book holds.



1

,Exercise 1.2

Part (a): We are told that fi is convex so we have that

fi (λx + (1 − λ)y) ≤ λfi (x) + (1 − λ)fi (y) , (4)

for every i. For our function f (·) we have that
m
X
f (λx + (1 − λ)y) = fi (λx + (1 − λ)y) (5)
i=1
m
X
≤ λfi (x) + (1 − λ)fi (y) (6)
i=1
Xm m
X
= λ fi (x) + (1 − λ) fi (y) (7)
i=1 i=1
= λf (x) + (1 − λ)f (y) (8)

and thus f (·) is convex.

Part (b): The definition of a piecewise linear convex function fi is that is has a represen-
tation given by
fi (x) = Maxj=1,2,...,m (c′j x + dj ) . (9)
So our f (·) function is
n
X
f (x) = Maxj=1,2,...,m (c′j x + dj ) . (10)
i=1

Now for each of the fi (x) piecewise linear convex functions i ∈ 1, 2, 3, . . . , n we are adding
up in the definition of f (·) we will assume that function fi (x) has mi affine/linear functions
to maximize over. Now select a new set of affine values (c̃j , d˜j ) formed by summing elements
from each of the 1, 2, 3, . . . , n sets of coefficients from the individual fi . Each pair of (c̃j , d˜j )
is obtained by summing one of the (cj , dj ) pairs from each of the n sets. The number of
such coefficients can be determined as follows. We have m1 choices to make when selecting
(cj , dj ) from the first piecewise linear convex function, m2 choices for the second piecewise
linear convex function, and so on giving a total of m1 m2 m3 · · · mn total possible sums each
producing a single pair (c̃j , d˜j ). Thus we can see that f (·) can be written as

f (x) = Maxj=1,2,3,...,Qnl=1 ml c̃′j x + d˜j , (11)

since one of the (c̃j , d˜j ) will produce the global maximum. This shows that f (·) can be
written as a piecewise linear convex function.



Exercise 1.3 (minimizing a linear plus linear convex constraint)

We desire to convert the problem min(c′ x + f (x)) subject to the linear constraint Ax ≥ b,
with f (x) given as in the picture to the standard form for linear programming. The f (·)

, given in the picture can be represented as

 −ξ + 1 ξ<1
f (ξ) = 0 1<ξ<2 (12)
2(ξ − 2) ξ > 2,


but it is better to recognize this f (·) as a piecewise linear convex function given by the
maximum of three individual linear functions as

f (ξ) = max (−ξ + 1, 0, 2ξ − 4) (13)

Defining z ≡ max (−ξ + 1, 0, 2ξ − 4) we see that or original problem of minimizing over the
term f (x) is equivalent to minimizing over z. This in tern is equivalent to requiring that z
be the smallest value that satisfies

z ≥ −ξ + 1 (14)
z ≥ 0 (15)
z ≥ 2ξ − 4 . (16)

With this definition, our original problem is equivalent to

Minimize (c′ x + z) (17)

subject to the following constraints

Ax ≥ b (18)
z ≥ −d′ x + 1 (19)
z ≥ 0 (20)
z ≥ 2d′ x + 4 (21)

where the variables to minimize over are (x, z). Converting to standard form we have the
problem
Minimize(c′ x + z) (22)
subject to

Ax ≥ b (23)

dx+z ≥ 1 (24)
z ≥ 0 (25)

−2d x + z ≥ 4 (26)



Exercise 1.4

Our problem is
Minimize(2x1 + 3|x2 − 10|) (27)
subject to
|x1 + 2| + |x2 | ≤ 5 . (28)

Lerne den Verkäufer kennen

Seller avatar
Bewertungen des Ansehens basieren auf der Anzahl der Dokumente, die ein Verkäufer gegen eine Gebühr verkauft hat, und den Bewertungen, die er für diese Dokumente erhalten hat. Es gibt drei Stufen: Bronze, Silber und Gold. Je besser das Ansehen eines Verkäufers ist, desto mehr kannst du dich auf die Qualität der Arbeiten verlassen.
SolutionsWizard Universidad de San Andres
Folgen Sie müssen sich einloggen, um Studenten oder Kursen zu folgen.
Verkauft
511
Mitglied seit
7 Jahren
Anzahl der Follower
142
Dokumente
50
Zuletzt verkauft
22 Jahren vor
The #1 Shop for Solutions Manual

Book Solutions Manuals, summaries for the IGCSEs, IB and general Finance / Business notes. I’m not responsible for whatever you might use my documents for, this is intended only for educational purposes.

4.1

78 rezensionen

5
44
4
16
3
7
2
2
1
9

Kürzlich von dir angesehen.

Warum sich Studierende für Stuvia entscheiden

on Mitstudent*innen erstellt, durch Bewertungen verifiziert

Geschrieben von Student*innen, die bestanden haben und bewertet von anderen, die diese Studiendokumente verwendet haben.

Nicht zufrieden? Wähle ein anderes Dokument

Kein Problem! Du kannst direkt ein anderes Dokument wählen, das besser zu dem passt, was du suchst.

Bezahle wie du möchtest, fange sofort an zu lernen

Kein Abonnement, keine Verpflichtungen. Bezahle wie gewohnt per Kreditkarte oder Sofort und lade dein PDF-Dokument sofort herunter.

Student with book image

“Gekauft, heruntergeladen und bestanden. So einfach kann es sein.”

Alisha Student

Häufig gestellte Fragen