Dieses Dokument 12-seitige Dokument beinhaltet Lernstoff für das Abitur im Fach Chemie in kompakter Form. Thematisiert werden u.a. die Themen Atombau, Stoffeinteilung, Elektronenkonfiguration, Bindungsarten, Elektrolyse, Elektrochemische Prozesse, Elektrodenpotential, Galvanische Zelle, Faraday'sc...
Atombau Stoffe
Reinstoffe
Stabilität von Ionenladungen (Bsp.: Magnesium)
Beispiel: Aluminium Al3- Elemente Verbindungen
→ durch Abgabe von 3 Valenzelektronen fällt (Bsp.: Magnesium) (Bsp.: Na+Cl-)
äußerste Schale weg und auf der weiten Schale
wird mit 8 Elektronen die stabile Oktettregel erfüllt Metalle Nichtmetalle Molekülverb. Ionenverb.
(Bsp.: Mg) (Bsp.: O2) (Bsp.: H2O) (Bsp.: Na+Cl-)
Unterschied Molekülformel/ Verhältnisformel
Molekülformel = Verbindung der Atome (NaCl)
Verhätnisformel = Ladungsverteilung (Na+Cl-) Atome Atome/ Moleküle Moleküle Ionen
(Bsp.: (Bsp.: O2) (Bsp.: H2) (Bsp.:
Atommodelle Mg-Atom) Chlorid,
Cl-)
Elektronenkonfiguration
= Verteilung der Elektronen in den Orbitalen
→ in jedem Orbital bis zu 2 Elektronen, diese haben dann
1803: Dalton 1897: Thompson 1919: Rutherford entgegengesetzte Spins
Bohrsches Atommodell Aufbauprinzip
E Besetzung der Orbitale nach drei Grundlagen:
n=4 E Emission 1) Energieprinzip: Orbitale werden beginnend mit
n=3 L
niedrigster Schale von unten → oben besetzt
n=2 2) Hundsche Regel: alle Orbitale mit gleicher Energie
K werden zunächst nur mit einem Elektron besetzt & erst
n=1 Absorption
nach Auffüllen der restlichen, mit dem zweiten E.
3) Pauli-Prinzip: Behindern sich zwei Elektronen in einem
Orbital, haben sie entgegengesetzte Spins.
Bohrsches Schalenmodell Orbitalmodell
11Na
E
M 3s1
2p6
Problem: Atommodell beschrieb nur das Verhalten L 2s2
von Wasserstoff K 1s2
→ Feststellung, dass Elektronen auf dem selben
Elektronenkonfiguration: 1s22s22p63s1
Energieniveau, unterschiedliche Energien besitzen
können → Aufteilung in Unterniveaus (Orbitale) Kästchenschreibweise:
Orbitale
= Wellenfunktion eines Elektrons in Abhängigkeit
von der Raumkonfiguration (x,y,z) Valenzelektronenkonfiguration
→ geben den Raum an, in dem sich Elektronen mit Die Besetzung der Orbitale, die zusätzlich zur vorherigen
hoher Wahrscheinlichkeit befinden Edelgaskonfiguration mit Außenelektronen besetzt sind.
z.B. Na: 1s22s22p63s1 → [Ne] 3s1
verschiedene Formen von Orbitalen: s,p,d,f (je nach
Elektronenkonfiguration der Ionen
Form)
z.B. Sc = Sc: [Ar] 4s23d1 → Sc3+: [Ar]
C4+ → [He] oder C4- → [Ne]
Die Position der Elektronen in Atomen wird durch
die Quantenzahlen beschrieben. sp3-Hybridisierung 6C
Hauptquantenzahl n = 1,2,3 (Schalennummer)
Nebenquantenzahl l = 0,1,… = n-1 (Form des
Orbitals & Anzahl der Knotenflächen)
Magnetquantenzahl m = -1,…,0…,1 (Ausrichtung → Elektronen
des Orbital) nehmen
Energieniveau
Spinquantenzahl s (Drehrichtung des Elektrons) zw. 2s & 2p ein
, Nebengruppenelemente Sortierung der Orbitale
• Energieunterschiede zw. höheren Energieniveaus
HG: s p werden geringer (mit wachsendem Kernabstand).
äußere Schalen
NG: d • Folge: s-Orbitale mit größeren Hauptquantenzahlen
können energetisch tiefer liegen, als d- oder f-Orbitale
Nebengruppenelemente (d-Block-Elemente) findet mit kleineren Hauptquantenzahl.
man nur in der 4. Bis 7. Periode des PSE. • Aufbauprinzip: 3. Periode: 2n2 = 18 Elektronen in
energetisch günstigeres 4s-Niveau → danach in 3d-
stabile Besetzung Niveau → Bildung von d-Block
• besonders Stabil = Vollbesetzung (nd10) →
Edelgaskonfiguration & die Halbbesetzung (nd5) Eigenschaften
aufgrund der für das sechste Elektron • geringe Energieunterschiede der d- & s-Orbitale →
aufzuwendenden Spinpaarungsenergie Eigenschaftsunterschiede innerhalb der d-Block-
Elemente geringer
Beispiel: Eisen(II)-Ion • leichte Abgabe von Valenzelektronen → alle d-Block-
Elemente sind Metalle
Fe2+ • 4s-Elektronen werden stärker abgeschirmt gg.
1s 2s 2p 3s 3p 4s 3d Atomkern & deswegen zuerst abgegeben, NG-
Elemente deswegen häufig zweiwertig
zuerst Abgabe von 4s-Elektronen bei • aufgrund d. geringen Energieunterschiede zw. 4s- &
Ionisierung 3d-Block-Elementen werden Elektronen beider
stabil, da Niveaus als Valenzelektronen genutzt → Entstehung
halbbesetzt einer Variabilität in den Ionenladungen
• besonders stabil,wenn voll oder halb besetzt
The benefits of buying summaries with Stuvia:
Guaranteed quality through customer reviews
Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.
Quick and easy check-out
You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.
Focus on what matters
Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!
Frequently asked questions
What do I get when I buy this document?
You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.
Satisfaction guarantee: how does it work?
Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.
Who am I buying these notes from?
Stuvia is a marketplace, so you are not buying this document from us, but from seller Zusammenfassungen. Stuvia facilitates payment to the seller.
Will I be stuck with a subscription?
No, you only buy these notes for $10.80. You're not tied to anything after your purchase.