Samenvatting Rekenen met verhoudingen op de basisschool
42 views 2 purchases
Course
Rekenen B1
Institution
Saxion Hogeschool (Saxion)
Book
Rekenen met verhoudingen op de basisschool
Ik heb hoofdstuk 3, 4 en 5 samengevat van het boek 'Rekenen met verhoudingen op de basisschool'. Het boek is geschreven door Frans van Galen & Annette Markusse. Het gaat om de 1e druk (reken-wiskundedidactiek voor de bovenbouw).
Begrippen hoofdstuk 3
Benoemde breuk Meetsituatie
Breukentaal Niveaus van oplossen
Cirkelmodel Ondermaat
Concreet niveau Rationaal getal
Context Relatienetwerk
Deel-geheelrelatie Schematisch niveau
Denkmodel Stambreuk
Dubbele getallenlijn Strook
Formeel niveau Verdeelsituatie
Gelijknamige breuk Verhouding
Gelijkwaardige breuk Verschijningsvormen van breuken
Leerlijn
3.1. Hoe rijk is jouw rekenkennis?
Als leraar moet je zelf goed kunnen rekenen, maar je moet je ook kunnen
verplaatsen in het denken van kinderen. Kinderen rekenen het vaak net iets anders
uit, dan dat jij zou doen. Je moet reflectief met je wendbare en rijke rekenkennis om
kunnen gaan.
7 blikjes met kattenvoer
Iedere dag ¾ blikje.
Hoeveel dagen voordat de voorraad op is?
Concreet niveau: Je neemt blikjes mee naar de klas of je tekent de blikjes uit.
Algemener model: Verhoudingstabel.
Dag 1 2 4 8 9
, Blik ¾ 1½ 3 6 6¾
Formeel niveau:
4x¾=3
8x¾=6
9x¾=6¾
9 dagen en ¼ blik over
De drie niveaus van probleemoplossen vormen de basis voor iedere leerlijn. De
leerlijn beschrijft de manier waarop het wiskundig inzicht van kinderen zich kan
ontwikkelen en de opbouw in opgaven die zo’n ontwikkeling stimuleren. Het begint
altijd met concreet materiaal of tekeningen van situaties en in een context.
3.2 Hoeveel moeten kinderen van breuken weten?
Breuken geven betekenis aan procenten en kommagetallen. Het begrip van breuken
vormt het fundament voor het begrijpen van verhoudingen, kommagetallen en
procenten. Procenten en kommagetallen zijn recente uitvindingen als je dit vergelijkt
met breuken. Breuken waren al bekend bij de oude Egyptenaren en Babyloniërs voor
Christus. Het concept breuken sluit direct aan bij de manier van denken van jongere
kinderen. In het dagelijks leven zijn ze namelijk al bezig met het verdelen van
bijvoorbeeld eten of het aangeven dat de deur twee keer zo groot is, dan een ander
voorwerp. In het dagelijks leven speelt het rekenen met breuken geen grote rol. Op
zich zouden we er daarom mee kunnen volstaan te eisen dat leerlingen aan het eind
van de basisschool met vrij eenvoudige breuken kunnen rekenen, en dat vooral
binnen contextsituaties. Op die manier doen we echter leerlingen die meer kunnen
tekort.
3.3 Wat zijn breuken?
Een breuk is een getal dat te schrijven is als de deling van twee gehele getallen. Als
een getal geschreven kan worden als het quotiënt (uitkomst van de deling) van hele
getallen spreekt men in de wiskunde van een rationaal getal. Hele getallen zijn zelf
ook rationale getallen. Rationale getallen zijn alle getallen die te schrijven zijn als een
breuk. Pi is een irrationaal getal, het heeft geen einde. Breuken kan je onderscheiden
in verdeel en meetsituaties. Ze ontstaant als we iedereen evenveel proberen te
geven, maar het te verdelen aantal niet past bij het aantal personen.
Verdeelsituaties:
- Deel van een geheel.
- Er kan een rest overblijven.
- ‘Eerlijk verdelen’: 3 pannenkoeken en 4 personen = iedereen krijgt ¾ deel.
Vanuit het meten is de notatie met tellers groter dan 1 ontstaan. De stap van
stambreuken als ½, 1/3 en 1/4 naar breuken als 2/3 en ¾ is groter dan het miscchien
lijkt. 2/3 heeft een dubbele betekenis:
The benefits of buying summaries with Stuvia:
Guaranteed quality through customer reviews
Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.
Quick and easy check-out
You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.
Focus on what matters
Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!
Frequently asked questions
What do I get when I buy this document?
You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.
Satisfaction guarantee: how does it work?
Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.
Who am I buying these notes from?
Stuvia is a marketplace, so you are not buying this document from us, but from seller gkesenger. Stuvia facilitates payment to the seller.
Will I be stuck with a subscription?
No, you only buy these notes for $7.05. You're not tied to anything after your purchase.