En general un cuerpo puede tener tres tipos distintos de movimiento simultá-
neamente. De traslación a lo largo de una trayectoria, de rotación mientras se
está trasladando, en este caso la rotación puede ser sobre un eje que pase por
el cuerpo, y si a la vez este eje esta girando en torno a un eje vertical, a la ro-
tación del eje del cuerpo rotante se le llama movimiento de precesión (por
ejemplo un trompo), y de vibración de cada parte del cuerpo mientras se tras-
lada y gira. Por lo tanto el estudio del movimiento puede ser en general muy
complejo, por esta razón se estudia cada movimiento en forma independiente.
Cuando un cuerpo está en rotación, cada punto tiene un movimiento distinto
de otro punto del mismo cuerpo, aunque como un todo se esté moviendo de
manera similar, por lo que ya no se puede representar por una partícula. Pero
se puede representar como un objeto extendido formado por un gran número
de partículas, cada una con su propia velocidad y aceleración. Al tratar la rota-
ción del cuerpo, el análisis se simplifica si se considera como un objeto rígido
y se debe tener en cuenta las dimensiones del cuerpo.
Cuerpo rígido. Se define como un cuerpo ideal cuyas partes (partículas que lo
forman) tienen posiciones relativas fijas entre sí cuando se somete a fuerzas
externas, es decir es no deformable. Con esta definición se elimina la posibili-
dad de que el objeto tenga movimiento de vibración. Este modelo de cuerpo
rígido es muy útil en muchas situaciones en las cuales la deformación del ob-
jeto es despreciable.
El movimiento general de un cuerpo rígido es una combinación de movimien-
to de traslación y de rotación. Para hacer su descripción es conveniente estu-
diar en forma separada esos dos movimientos.
6.1 TORQUE DE UNA FUERZA.
Cuando se aplica una fuerza en algún punto de un cuerpo rígido, el cuerpo
tiende a realizar un movimiento de rotación en torno a algún eje. La propiedad
de la fuerza para hacer girar al cuerpo se mide con una magnitud física que
llamamos torque o momento de la fuerza. Se prefiere usar el nombre torque y
no momento, porque este último se emplea para referirnos al momento lineal,
171
, Cap. 6 Torque y equilibrio.
al momento angular o al momento de inercia, que son todas magnitudes físicas
diferentes para las cuales se usa el mismo término.
Analizaremos cualitativamente el efecto de rotación que una fuerza puede
producir sobre un cuerpo rígido. Consideremos como cuerpo rígido a una re-
gla fija en un punto O ubicado en un extremo de la regla, como se muestra en
la figura 6.1, sobre el cual pueda tener una rotación, y describamos el efecto
que alguna fuerza de la misma magnitud actuando en distintos puntos, produce
sobre la regla fija en O. La fuerza F1 aplicada en el punto a produce en torno a
O una rotación en sentido antihorario, la fuerza F2 aplicada en el punto b pro-
duce una rotación horaria y con mayor rapidez de rotación que en a, la fuerza
F3 aplicada en b, pero en la dirección de la línea de acción que pasa por O, no
produce rotación (se puede decir que F3 ‘empuja’ a la regla sobre O, pero no
la mueve), F4 que actúa inclinada en el punto b produce una rotación horaria,
pero con menor rapidez de rotación que la que produce F2; F5 y F6 aplicadas
perpendiculares a la regla, saliendo y entrando en el plano de la figura respec-
tivamente, no producen rotación. Por lo tanto existe una cantidad que produce
la rotación del cuerpo rígido relacionada con la fuerza, que es lo que defini-
mos como el torque de la fuerza.
Figura 6.1
Se define el torque τ de una fuerza F que actúa sobre algún punto del cuerpo
rígido, en una posición r respecto de cualquier origen O, por el que puede pa-
sar un eje sobre el cual se produce la rotación del cuerpo rígido, al producto
vectorial entre la posición r y la fuerza aplicada F, por la siguiente expresión:
172
, Cap. 6 Torque y equilibrio.
r
τr = rr × F
(6.1)
El torque es una magnitud vectorial, si α es el ángulo entre r y F, su valor
numérico, por definición del producto vectorial, es:
τ = r ( Fsen α )
(6.2)
su dirección es siempre perpendicular al plano de los vectores r y F, cuyo dia-
grama vectorial se muestra en la figura 6.2, su sentido esta dado por la regla
del producto vectorial, la regla del sentido de avance del tornillo o la regla de
la mano derecha. En la regla de la mano derecha los cuatro dedos de la mano
derecha apuntan a lo largo de r y luego se giran hacia F a través del ángulo α ,
la dirección del pulgar derecho estirado da la dirección del torque y en general
de cualquier producto vectorial.
Figura 6.2
Por convención se considera el torque positivo (negativo) si la rotación que
produciría la fuerza es en sentido antihorario (horario); esto se ilustra en la
figura 6.3. La unidad de medida del torque en el SI es el Nm (igual que para
trabajo, pero no se llama joule).
173
The benefits of buying summaries with Stuvia:
Guaranteed quality through customer reviews
Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.
Quick and easy check-out
You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.
Focus on what matters
Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!
Frequently asked questions
What do I get when I buy this document?
You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.
Satisfaction guarantee: how does it work?
Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.
Who am I buying these notes from?
Stuvia is a marketplace, so you are not buying this document from us, but from seller javierstivenarrietaalvear. Stuvia facilitates payment to the seller.
Will I be stuck with a subscription?
No, you only buy these notes for $8.69. You're not tied to anything after your purchase.