A Level Maths AQA Verified Solutions
A Level Maths AQA Verified Solutions Straight line equation formula y-y1 = m(x-x1) Perpendicular straight lines m1 x m2 = -1 Log(a)b=c a^c=b Log(10)x + Log(10)y = Log(10)xy Log(10)x - Log(10)y = Log(10)x/y kLog(10)x = Log(10)x^k Displacement dy/dx = Velocity Velocity dy/dx = Acceleration Cos^2A + Sin^2A= 1 1 + Tan^2A = Sec^2A 1 + Cot^2A = Cosec^2A 2SinAcosA = Sin2A Cos^2A - Sin^2A = Cos2A (2tanA)/(1-tan^2A) = Tan2A A^x A^y = A^xy A^x / A^y = A^x-y (A^x)^y a^xy Arc Length (radians) = rθ Sector Area (radians) = 1/2 r^2 θ x^n dy/dx = nx^(n-1) Sinkx dy/dx = kCoskx Coskx dy/dx = -kSinkx e^(kx) dy/dx = ke^(kx) lnx dy/dx = 1/x f(x)+g(x) dy/dx = f'(x)+g'(x) f(x)g(x) dy/dx = f'(x)g(x) + f(x)g'(x) f(g(x)) dy/dx = f'(g(x))g'(x) ∫x^n = (x^(n+1))/(n+1) +c ∫Coskx = 1/k Sinkx +c ∫Sinkx = -1/k Coskx +c ∫e^(kx) = 1/k e^(kx) +c ∫1/x = ln |x| +c ∫f'(x)+g'(x) = f(x)+g(x) +c ∫f'(g(x))g'(x) = f(g(x)) +c Weight = Mass x g Force = Mass x Acceleration Midpoint of a line (X1+X2)/2 , (y1+y2)/2 Length of a straight line √(x2-x1)^2+(y2-y1)^2
Escuela, estudio y materia
- Institución
- A Level Maths AQA Verified Solution
- Grado
- A Level Maths AQA Verified Solution
Información del documento
- Subido en
- 24 de abril de 2024
- Número de páginas
- 7
- Escrito en
- 2023/2024
- Tipo
- Examen
- Contiene
- Preguntas y respuestas
Temas
-
a level maths aqa verified solutions
Documento también disponible en un lote