100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Solution Manual for Matching Supply with Demand An Introduction to Operations Management, 5th Edition by Cachon $19.99   Add to cart

Exam (elaborations)

Solution Manual for Matching Supply with Demand An Introduction to Operations Management, 5th Edition by Cachon

 21 views  0 purchase
  • Course
  • Operations Management
  • Institution
  • Operations Management

Solution Manual for Matching Supply with Demand An Introduction to Operations Management, 5th Edition Cachon. Table of Contents: Chapter 2:The Process View of the Organization Chapter 3:Understanding the Supply Process: Evaluating Process Capacity Chapter 4:Estimating and Reducing Labor Costs Chapt...

[Show more]

Preview 4 out of 67  pages

  • April 30, 2024
  • 67
  • 2024/2025
  • Exam (elaborations)
  • Questions & answers
  • 5th edition by cachon
book image

Book Title:

Author(s):

  • Edition:
  • ISBN:
  • Edition:
  • Operations Management
  • Operations Management
avatar-seller
MedGeek
Solution Manual for
Matching Supply with Demand An Introduction to Operations Management, 5th Edition Cachon
Chapter 2-19
M
Chapter 2
The Process View of the Organization

Q2.1 Dell
ED
The following steps refer directly to Exhibit 2.1.
#1: For 2001, we find in Dell’s 10-k: Inventory = $400 (in million)
#2: For 2001, we find in Dell’s 10-k: COGS = $26,442 (in million)
26,442$ / year
#3: Inventory turns   66.105 turns per year
400$
C
40% per year
#4: Per unit Inventory cost   0.605% per year
66.105 per year
O
Q2.2. Airline
We use Little’s law to compute the flow time, since we know both the flow rate as well
as the inventory level:
N
Flow Time  Inventory / Flow Rate  35 passengers / 255 passengers per hour  0.137 hours
 8.24 minutes
N
Q2.3 Inventory Cost
(a) Sales  $60,000,000 per year / $2000 per unit  30,000 units sold per year
Inventory  $20,000,000/ $1000 per unit  20,000 units in inventory
O

Flow Time  Inventory / Flow Rate  20,000/ 30,000 per year  2/ 3 year  8 months
Turns  1/ Flow Time  1/ (2/ 3 year)  1.5 turns per year
IS

Note: we can also get this number directly by writing: Inventory turns  COGS / Inventory

(b) Cost of Inventory: 25% per year /1.5 turns  16.66% . For a $1000 product, this would
SE
make an absolute inventory cost of $166.66 .

Q2.4. Apparel Retailing

(a) Revenue of $100M implies COGS of $50M (because of the 100% markup).
U
Turns  COGS/ Inventory  $50M / $5M  10 .
(b) The inventory cost, given 10 turns, is 40%/10  4% . For a 30$ item, the inventory
cost is 0.4  $30  $1.20 per unit .
R

Q2.5. La Villa
(a) Flow Rate  Inventory / Flow Time  1200 skiers /10 days  120 skiers per day
(b) Last year: on any given day, 10% (1 of 10) of skiers are on their first day of skiing

© McGraw Hill LLC. All rights reserved. No reproduction or distribution without the prior written consent of
McGraw Hill LLC.

, This year: on any given day, 20% (1 of 5) of skiers are on their first day of skiing

Average amount spent in local restaurants (per skier)
Last year  0.1 $50  0.9  $30  $32
This year  0.2  $50  0.8  $30  $34
% change  ($34  $32) / $32  6.25% increase
M

Q2.6. Highway
ED
We look at 1 mile of highway as our process. Since the speed is 60 miles per hour, it
takes a car 1 minute to travel through the process (flow time).
There are 24 cars on ¼ of a mile, i.e. there are 96 cars on the 1 mile stretch (inventory).
Inventory = Flow Rate * Flow Time: 96 cars = Flow Rate * 1 minute
Thus, the Flow Rate is 96 cars per minute, corresponding to 96*60 = 5760 cars per hour.
C

Q2.7. Strohrmann Baking
The bread needs to be in the oven for 12 minutes (flow time). We want to produce at a
O
flow rate of 4000 breads per hour, or 4000/60 = 66.66 breads per minute.

Inventory = Flow Rate * Flow Time: Inventory = 66.66 breads per minute* 12 minutes
N
Thus, Inventory = 800 breads, which is the required size of the oven.

Q2.8. Mt Kinley Consulting
N
We have the following information available from the question:
O
Level Inventory (number of consultants at Flow Time (time spent at that
that level) level)
Associate 200 4 years
IS
Manager 60 6 years
Partner 20 10 years

(a) We can use Little’s law to find the flow rate for associate consultants: Inventory =
SE
Flow Rate * Flow Time; 200 consultants = Flow Rate * 4 years; thus, the flow rate is
50 consultants per year, which need to be recruited to keep the firm in its current size
(note: while there are also 50 consultants leaving the associate level, this says nothing
about how many of them are dismissed vs how many of them are promoted to
Manager level).
U
(b) We can perform a similar analysis at the manager level, which indicates that the flow
rate there is 10 consultants. In order to have 10 consultants as a flow rate at the
manager level, we need to promote 10 associates to manager level (remember, the
R
firm is not recruiting to the higher ranks from the outside). Hence, every year, we
dismiss 40 associates and promote 10 associates to the manager level (the odds at that
level are 20%)



© McGraw Hill LLC. All rights reserved. No reproduction or distribution without the prior written consent of
McGraw Hill LLC.

, Now, consider the partner level. The flow rate there is 2 consultants per year (obtained
via the same calculations as before). Thus, from the 10 manager cases we evaluate every
year, 8 are dismissed and 2 are promoted to partner (the odds at that level are thereby also
20%).

In order to find the odds of a new hire to become partner, we need to multiply the
M
promotion probabilities: 0.2*0.2 = 0.04. Thus, a new hire has a 4% chance of making it to
partner.
ED
Q2.9. Major US Retailers
a. Product stays on average for 31.9 days in Costco’s inventory
b. Costco has for a $5 product an inventory cost of $0.1311 which compares to a
$0.2049 at Wal-Mart
C
Q2.10. McDonald’s
a. Inventory turns for McDonald’s were 92.3. They were 30.05 for Wendy’s.
b. McDonald’s has per unit inventory costs of 0.32%, which for a 3$ meal about
O
$0.00975 . That compares to 0.998% at Wendy’s where the cost per meal is $0.0299 .

Q2.11. BCH
I = 400 associates, T = 2 years. R  I / T  400 associates / 2 yrs  200 associates / yr .
N

Q2.12. Kroger
N
Turns  R / I   12.3
O
Matching Supply with Demand: An Introduction to Operations Management
5e
IS
Solutions to Chapter Problems

Chapter 3
SE
Understanding the Supply Process: Evaluating Process Capacity


Q3.1 Process Analysis with One Flow Unit
(a) Capacity of the three resources in units per hour are 60  2 /10  12 , 60 1/ 6  10 ;
60  3 /16  11.25 . The bottleneck is the resource with the lowest capacity, which is
U
resource 2.
(b) The process capacity is the capacity of the bottleneck, which is 10 units/hr .
(c) If demand  8 units / hr , then the process is demand constrained and the flow rate is
R
8 units/hr
(d) Utilization = Flow Rate / Capacity . For the three resources they are 8 /12 , 8 /10 , and
8 /11.25 .


© McGraw Hill LLC. All rights reserved. No reproduction or distribution without the prior written consent of
McGraw Hill LLC.

, Q3.2 Process Analysis with Multiple Flow Units
a) Bottleneck is resource 3 because it has the highest implied utilization of 125%. The
demands per hour of the three products are  5 ,  6.25 and  7.5 . The
total minutes of work demanded per hour at resource 1 is 5 × 5 + 6.25 * 5 + 7.5 * 5 =
93.75. Two workers at resource 1 produce 2 * 60 = 120 min of work per hour. So
resource 1’s utilization is 93.75 /120  0.78 . Utilization at the other resources are
M
similarly evaluated.
b) The capacity of resource 3 is 60 /15  4 units per hour. Given the ratio of units produced
must be 4 to 5 to 6, the process can produce 4 units/ hr of A, 5 units / hr of B and
ED
6 units / hr of C.


Q3.3. Cranberry
Cranberries arrive at a rate of 150 barrels per hour. They get processed at a rate of 100 barrels
C
per hour. Thus, inventory accumulates at a rate of 150-100 = 50 barrels per hour. This happens
while trucks arrive, i.e. from 6am to 2pm. The highest inventory level thereby is 8h*50 barrels
per hour = 400 barrels. From these 400 barrels, 200 barrels are in the bins, the other 200 barrels
O
are in trucks.
(a) 200 barrels
(b) From 2pm onwards, no additional cranberries are received. Inventory gets depleted at a rate
N
of 100 barrels per hour. Thus, it will take 2h until the inventory level has dropped to 200
barrels, at which time all waiting cranberries can be stored in the bins (no more truck
waiting)
N
(c) It will take another 2 hours until all the bins are empty
(d) Since the seasonal workers only start at 10:00am, the first 4 hours of the day we accumulate
4hours * 50barrels per hour = 200 barrels. For the remaining time that we receive incoming
O
cranberries, our processing rate is higher (125 barrels per hour). Thus, inventory only
accumulates at a rate of 25 (150-125 barrels per hour). Given that this happens over 4 hours,
we get another 100 barrels in inventory. At 2pm, we thereby have 300 barrels in inventory.
IS
After 2pm, we receive no further cranberries, yet we initially process cranberries at a rate of
125 barrels per hour. Thus, it only takes 100 barrels /125 barrels/hour  0.8 hours  48 minutes
until all bins are empty. From then, we need another 2h until the bins are empty.
SE
Q3.4. Western Pennsylvania Milk
We start the day with 25,000 gallons of milk in inventory. From 8am onwards, we produce 5,000
gallons, yet we ship 10,000 gallons. Thus inventory is depleted at a rate of 5000 gallons per hour,
which leaves us without milk after 5 hours (at 1pm). From then onwards, clients will have to
wait. This situation gets worse and worse and by 6pm (last client arrives), we are short 25,000
U
gallons.
(a) 1pm
(b) Clients will stop waiting when we have worked off our 25,000 gallon backlog that we are
R
facing at 6pm. Since we are doing this at a rate of 5,000 gallon per hour, clients will stop
waiting at 11pm (after 5 more hours).
(c) At 6pm, we have a backlog of 25,000 gallons, which is equivalent to 20 trucks
(d) The waiting time is the area in the triangle

© McGraw Hill LLC. All rights reserved. No reproduction or distribution without the prior written consent of
McGraw Hill LLC.

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller MedGeek. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $19.99. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

67866 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 14 years now

Start selling
$19.99
  • (0)
  Add to cart