100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Solution Manual For Precalculus 8th Edition by James Stewart, Lothar Redlin, Saleem Watson Chapter 1-12 $17.49   Add to cart

Exam (elaborations)

Solution Manual For Precalculus 8th Edition by James Stewart, Lothar Redlin, Saleem Watson Chapter 1-12

1 review
 45 views  3 purchases
  • Module
  • Solution Manual
  • Institution
  • Solution Manual

Solution Manual For Precalculus 8th Edition by James Stewart, Lothar Redlin, Saleem Watson Chapter 1-12

Preview 4 out of 925  pages

  • April 30, 2024
  • 925
  • 2023/2024
  • Exam (elaborations)
  • Questions & answers
book image

Book Title:

Author(s):

  • Edition:
  • ISBN:
  • Edition:
  • Solution Manual
  • Solution Manual

1  review

review-writer-avatar

By: 임merry1 • 3 months ago

avatar-seller
solutions
PROLOGUE: Principles of Problem Solving

distance 1 1
1. Let r be the rate of the descent. We use the formula time  ; the ascent takes h, the descent takes h, and the
rate 15 r
2 1 1 1 1 1
total trip should take  h. Thus we have     0, which is impossible. So the car cannot go
30 15 15 r 15 r
fast enough to average 30 mi/h for the 2­mile trip.

2. Let us start with a given price P. After a discount of 40%, the price decreases to 06P. After a discount of 20%, the price
decreases to 08P, and after another 20% discount, it becomes 08 08P  064P. Since 06P  064P, a 40% discount
is better.

3. We continue the pattern. Three parallel cuts produce 10 pieces. Thus, each new cut produces an additional 3 pieces. Since
the first cut produces 4 pieces, we get the formula f n  4  3 n  1, n  1. Since f 142  4  3 141  427, we
see that 142 parallel cuts produce 427 pieces.

4. By placing two amoebas into the vessel, we skip the first simple division which took 3 minutes. Thus when we place two
amoebas into the vessel, it will take 60  3  57 minutes for the vessel to be full of amoebas.

5. The statement is false. Here is one particular counterexample:
Player A Player B
First half 1
1 hit in 99 at­bats: average  99 0 hit in 1 at­bat: average  01
Second half 1 hit in 1 at­bat: average  11 98 hits in 99 at­bats: average  98
99
Entire season 2
2 hits in 100 at­bats: average  100 99
99 hits in 100 at­bats: average  100

6. Method 1: After the exchanges, the volume of liquid in the pitcher and in the cup is the same as it was to begin with. Thus,
any coffee in the pitcher of cream must be replacing an equal amount of cream that has ended up in the coffee cup.
Method 2: Alternatively, look at the drawing of the spoonful of coffee and cream cream
mixture being returned to the pitcher of cream. Suppose it is possible to separate
the cream and the coffee, as shown. Then you can see that the coffee going into the coffee

cream occupies the same volume as the cream that was left in the coffee.


Method 3 (an algebraic approach): Suppose the cup of coffee has y spoonfuls of coffee. When one spoonful of cream
cream 1 coffee y
is added to the coffee cup, the resulting mixture has the following ratios:  and  .
mixture y1 mixture y1
1
So, when we remove a spoonful of the mixture and put it into the pitcher of cream, we are really removing of a
y1
y
spoonful of cream and spoonful of coffee. Thus the amount of cream left in the mixture (cream in the coffee) is
y 1
1 y
1  of a spoonful. This is the same as the amount of coffee we added to the cream.
y 1 y1

7. Let r be the radius of the earth in feet. Then the circumference (length of the ribbon) is 2r. When we increase the radius
by 1 foot, the new radius is r  1, so the new circumference is 2 r  1. Thus you need 2 r  1  2r  2 extra
feet of ribbon.
1

,2 Principles of Problem Solving

8. The north pole is such a point. And there are others: Consider a point a1 near the south pole such that the parallel passing
through a1 forms a circle C1 with circumference exactly one mile. Any point P1 exactly one mile north of the circle C1
along a meridian is a point satisfying the conditions in the problem: starting at P1 she walks one mile south to the point a1
on the circle C1 , then one mile east along C1 returning to the point a1 , then north for one mile to P1 . That’s not all. If a
point a2 (or a3 , a4 , a5 ,   ) is chosen near the south pole so that the parallel passing through it forms a circle C2 (C3 , C4 ,
C5 ,   ) with a circumference of exactly 12 mile ( 13 mi, 14 mi, 15 mi,   ), then the point P2 (P3 , P4 , P5 ,   ) one mile north
of a2 (a3 , a4 , a5 ,   ) along a meridian satisfies the conditions of the problem: she walks one mile south from P2 (P3 , P4 ,
P5 ,   ) arriving at a2 ( a3 , a4 , a5 ,   ) along the circle C2 (C3 , C4 , C5 ,   ), walks east along the circle for one mile thus
traversing the circle twice (three times, four times, five times,   ) returning to a2 (a3 , a4 , a5 ,   ), and then walks north one
mile to P2 ( P3 , P4 , P5 ,   ).

,CHAPTER 1 FUNDAMENTALS 1
1.1 Real Numbers 1
1.2 Exponents and Radicals 6
1.3 Algebraic Expressions 13
1.4 Rational Expressions 19
1.5 Equations 27
1.6 Complex Numbers 36
1.7 Modeling with Equations 39
1.8 Inequalities 50
1.9 The Coordinate Plane; Graphs of Equations; Circles 72
1.10 Lines 91
1.11 Solving Equations and Inequalities Graphically 101
1.12 Making Models Using Variation 111
Chapter 1 Review 115
Chapter 1 Test 132
¥ FOCUS ON MODELING: Fitting Lines to Data 138

, 1 FUNDAMENTALS

1.1 REAL NUMBERS
1. (a) The natural numbers are 1 2 3   .
(b) The numbers     3 2 1 0 are integers but not natural numbers.
p
(c) Any irreducible fraction with q  1 is rational but is not an integer. Examples: 32 ,  12
5 , 1729 .
23
q
p  
(d) Any number which cannot be expressed as a ratio of two integers is irrational. Examples are 2, 3, , and e.
q
2. (a) ab  ba; Commutative Property of Multiplication
(b) a  b  c  a  b  c; Associative Property of Addition
(c) a b  c  ab  ac; Distributive Property
3. (a) In set­builder notation: x  3  x  5 (c) As a graph:
_3 5
(b) In interval notation: 3 5
4. The symbol x stands for the absolute value of the number x. If x is not 0, then the sign of x is always positive.
5. The distance between a and b on the real line is d a b  b  a. So the distance between 5 and 2 is 2  5  7.
6. (a) If a  b, then any interval between a and b (whether or not it contains either endpoint) contains infinitely many
ba
numbers—including, for example a  n for every positive n. (If an interval extends to infinity in either or both
2
directions, then it obviously contains infinitely many numbers.)
(b) No, because 5 6 does not include 5.
7. (a) No: a  b   b  a  b  a in general.
(b) No; by the Distributive Property, 2 a  5  2a  2 5  2a  10  2a  10.
8. (a) Yes, absolute values (such as the distance between two different numbers) are always positive.
(b) Yes, b  a  a  b.

9. (a) Natural number: 100 10. (a) Natural numbers: 2, 9  3, 10

(b) Integers: 0, 100, 8 (b) Integers: 2,  100
2  50, 9  3, 10
   
(c) Rational numbers: 15, 0, 52 , 271, 314, 100, 8 (c) Rational numbers: 45  92 , 13 , 16666     53 ,
 
(d) Irrational numbers: 7,  2,  100
2 , 9  3, 10
 
(d) Irrational numbers: 2, 314

11. Commutative Property of addition 12. Commutative Property of multiplication

13. Associative Property of addition 14. Distributive Property

15. Distributive Property 16. Distributive Property

17. Commutative Property of multiplication 18. Distributive Property

19. x  3  3  x 20. 7 3x  7  3 x

21. 4 A  B  4A  4B 22. 5x  5y  5 x  y
1

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller solutions. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $17.49. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

67474 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy revision notes and other study material for 14 years now

Start selling
$17.49  3x  sold
  • (1)
  Add to cart