100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Tentamen (uitwerkingen)

APM4805 Assignment 1 (COMPLETE ANSWERS) 2024 - DUE 31 May 2024

Beoordeling
-
Verkocht
1
Pagina's
38
Cijfer
A+
Geüpload op
05-05-2024
Geschreven in
2023/2024

APM4805 Assignment 1 (COMPLETE ANSWERS) 2024 - DUE 31 May 2024 ;100 % TRUSTED workings, explanations and solutions. For assistance call or W.h.a.t.s.a.p.p us on ...(.+.2.5.4.7.7.9.5.4.0.1.3.2)........... Question 1. Investigate the maxima and minima of the following functions over the real line: (a) f (x) = 2x 2 + 3 (b) f (x) = jx 2j + jx 1j (c) f (x) = e 1 x (d) f (x) = x 2 x [20 marks] Question 2. Investigate the minima and maxima of f (x; y) = 3x + 2y 1 on the following sets: (a) x 2 + y 2 1 (b) x 0, y 0 [10 marks] Question 3. Find the following: (a) inf(e x + e x ) on R (b) sup e jxj on R (c) The level sets S0 and S5 for S = R, f (x) = e jxj . (d) The level sets S1 and S2 for S = f(x; y) : jxj + jyj 1g, f (x) = e jxj+jyj . [20 marks] Question 4. Find the level curves ff (x; y) = cg of each of the following functions f through the two points (0; 0) and (1; 2), and determine the sets ff (x; y) < cg and ff (x; y) > cg: (a) f (x; y) = x 2 + y 2 (b) f (x; y) = xy [10 marks] Note: Answer the following questions 5 to 8 related to the Study Guide APM4805/102/0/2024, Exercises section 3.7. Question 5. Find the critical points and critical values of the following functions, and determine which critical points determine local extrema: (a) f (x; y) = x 2 + y 2 + 4, (b) f (x; y) = x 2y2 + xy [10 marks] 1 Question 6. Consider the function f : R 2 ! R determined by f (x) = x T 1 2 2 4 x + x T 2 3 + 2: (a) Find the gradient and Hessian of f at the point (1; 1). (b) Find the directional derivative of f at (1; 1) in the direction of the maximal rate of increase. (c) Find a point that satis…es the …rst order necessary condition. Does the point also satisfy the second order necessary condition for a minimum? [15 marks] Question 7. Find the critical points of the function f (x; y) = x 2 4 2 + y 2: Show that f has a global minimum at each of the points (x; y) = (2; 0) and (x; y) = ( 2; 0). Show that the point (0; 0) is a saddle point. Sketch the level curves f (x; y) = constant for selected values of the constant. [15 marks] Question 8. Find the critical points and critical values of the function f (x; y) = ax2 + 2bxy + cy 2 x2 + y 2 . Show that the critical values are solutions of the equation a b b c = 0: [10 marks] [Total: 100 marks] –End of assignment –

Meer zien Lees minder
Instelling
Vak











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Gekoppeld boek

Geschreven voor

Instelling
Vak

Documentinformatie

Geüpload op
5 mei 2024
Aantal pagina's
38
Geschreven in
2023/2024
Type
Tentamen (uitwerkingen)
Bevat
Vragen en antwoorden

Onderwerpen

Voorbeeld van de inhoud

APM4805
ASSIGNMENT 1 2024
DUE DATE: 31 May 2024

, ASSIGNMENTS



Instructions for the Assignments
Take care to explain all your arguments.
Only PDF …les will be accepted.


ASSIGNMENT 01
Due date: Friday, 31 May 2024




Note: Answer the following questions 1 to 4 related to the Study Guide APM4805/102/0/2024,
Exercises section 1.5.

Question 1. Investigate the maxima and minima of the following functions over the real line:
(a) f (x) = 2x 2 + 3
(b) f (x) = jx 2j + jx 1j
(c) f (x) = e 1 x
2
(d) f (x) = x
x
[20 marks]


Question 2. Investigate the minima and maxima of f (x; y) = 3x + 2y 1 on the following sets:
(a) x 2 + y 2 1
(b) x 0, y 0
[10 marks]


Question 3. Find the following:
(a) inf(e x + e x ) on R
(b) sup e jxj on R
(c) The level sets S0 and S5 for S = R, f (x) = e jxj .
(d) The level sets S1 and S2 for S = f(x; y) : jxj + jyj 1g, f (x) = e jxj+jyj .
[20 marks]


Question 4. Find the level curves ff (x; y) = cg of each of the following functions f through the two points (0; 0) and (1; 2),
and determine the sets ff (x; y) < cg and ff (x; y) > cg:
(a) f (x; y) = x 2 + y 2
(b) f (x; y) = xy
[10 marks]


Note: Answer the following questions 5 to 8 related to the Study Guide APM4805/102/0/2024,
Exercises section 3.7.

Question 5. Find the critical points and critical values of the following functions, and determine which critical points
determine local extrema:
(a) f (x; y) = x 2 + y 2 + 4,
(b) f (x; y) = x 2 y2 + xy
[10 marks]




1

, Question 6. Consider the function f : R 2 ! R determined by
1 2 2
f (x) = x T x+xT + 2:
2 4 3
(a) Find the gradient and Hessian of f at the point (1; 1).
(b) Find the directional derivative of f at (1; 1) in the direction of the maximal rate of increase.
(c) Find a point that satis…es the …rst order necessary condition. Does the point also satisfy the second order necessary
condition for a minimum?
[15 marks]


2 2
Question 7. Find the critical points of the function f (x; y) = x 4 + y 2:
Show that f has a global minimum at each of the points ( x; y) = (2; 0) and (x; y) = ( 2; 0). Show that the point (0 ; 0) is a
saddle point. Sketch the level curves f (x; y) = constant for selected values of the constant.
[15 marks]


ax 2 + 2bxy + cy 2
Question 8. Find the critical points and critical values of the function f (x; y) = .
x2 + y 2
a b
Show that the critical values are solutions of the equation b c = 0:
[10 marks]



[Total: 100 marks]


–End of assignment –





2

,

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
LIBRARYpro University of South Africa (Unisa)
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
10531
Lid sinds
2 jaar
Aantal volgers
4904
Documenten
4821
Laatst verkocht
6 uur geleden
LIBRARY

On this page, you find all documents, Package Deals, and Flashcards offered by seller LIBRARYpro (LIBRARY). Knowledge is Power. #You already got my attention!

3.7

1459 beoordelingen

5
684
4
235
3
243
2
79
1
218

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen