Hfst 12: Symmetrische matrices gegeven door prof Willem Waegeman Deze samenvatting beslaat de cursus waaraan extra inzichten en bevindingen zijn toegevoegd + !!stappenplannen voor verschillende soorten oefeningen uit te werken!!
Orthogonale matrices
Eigenschappen voor een orthogonale matrix U geldt
▪ Orthonormale verzameling kolomvectoren (ook orthogonaal dus, staan loodrecht op elkaar en hebben
norm 1) + de kolomvectoren zijn ook lineair onafhankelijk
▪ UT = U-1
▪ ||U𝑥⃗|| = ||𝑥⃗|| bij een lineaire transformatie met een orthogonale matrix U op een vector
zal de norm van de vector waarvan je vertrekt hetzelfde blijven
▪ (U𝑥⃗) (U𝑦⃗) = 𝑥⃗ 𝑦⃗
. .
het scalair product zal niet veranderen als je op beide een lineaire transformatie
doet met een orthogonale matrix
▪ (U𝑥⃗) (U𝑦⃗) = 0
. ⃗⃗ 𝑥⃗ . 𝑦⃗ = ⃗0⃗, dus voor de lineaire transformatie moet het product ook ⃗0⃗ zijn
Symmetrische matrices
Voor een symmetrische, reële matrix geldt:
▪ A is een vierkante matrix
▪ A = AT
▪ A heeft reële eigenwaarden
▪ Eigenvectoren die bij verschillende eigenwaarden vormen een orthogonale verzameling (dus ook
lineair onafhankelijk) (nog sterker dan lineair onafhankelijk, wat ook geldt bij eigenvetoren van
verschillende eigenwaarden)
▪ αA(λ) = γA(λ) voor een eigenwaarde, ook sterker dan algemeen αA(λ) ≥ γA(λ) (nodig om diagonaliseerbaar
te zijn)
▪ A is orthogonaal diagonaliseerbaar → A = PDP-1 = PDPT met P = orthogonale matrix = orthogonale
diagonalisatie, hoeft niet meer inverse te berekenen (ortoghonale matrix → orthonormale vect)
Schrijf A als PDPT:
Bereken de eigenwaarden en de bijhorende eigenvectoren
Een symmetrische matrix heeft al de eigenschap dat de eigenvectoren onderling orthogonaal zijn dus
hoeft dit eigenlijk niet te checken
Wel de vectoren nog normaliseren (delen door norm) want moet orthogonale matrix P hebben =
orthonormale vectoren, de vectoren zijn onderling wel al orthogonaal
Samen zetten in P en corresponderende D opstellen
Bereken dan PT ipv de inverse
!!! indien je twee keer een eigenwaarde hebt zal je ook 2 eigenvectoren hebben zodat αA(λ) = γA(λ) voor
elke eigenwaarde want moet voor een symmetrische matrix
Analyse van kwadratische vormen
Kwadratische vorm = Q(𝒙
⃗⃗) = 𝒙
⃗⃗TA 𝒙
⃗⃗ met A een symmetrische matrix, vb:
=
Dan moet A opgesteld worden, de rijen worden van x1 tot x3 genummerd in dit geval, evenals de kolommen, zo
komt op a11 x1² te staan en op a12 en a21 x1x2, zo bekom je dus de symmetrische matrix
Stel 𝑥⃗ = [x1, x2, x3]
Kan dus een kwadratische vorm als een matrix schrijven (A)
!!! als je bv -4x1x2 hebt herschrijven als -2x1x2 -2x1x2 zodat je op a12 en a21 -2 kan schrijven
The benefits of buying summaries with Stuvia:
Guaranteed quality through customer reviews
Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.
Quick and easy check-out
You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.
Focus on what matters
Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!
Frequently asked questions
What do I get when I buy this document?
You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.
Satisfaction guarantee: how does it work?
Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.
Who am I buying these notes from?
Stuvia is a marketplace, so you are not buying this document from us, but from seller BioIngenieur. Stuvia facilitates payment to the seller.
Will I be stuck with a subscription?
No, you only buy these notes for $3.37. You're not tied to anything after your purchase.