100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Samenvatting Lineaire Algebra - Hfst 10 Complexe eigenwaarden $2.68
Add to cart

Summary

Samenvatting Lineaire Algebra - Hfst 10 Complexe eigenwaarden

 10 views  0 purchase
  • Course
  • Institution

Hfst 10: Complexe eigenwaarden gegeven door prof Willem Waegeman Deze samenvatting beslaat de cursus waaraan extra inzichten en bevindingen zijn toegevoegd + !!stappenplannen voor verschillende soorten oefeningen uit te werken!!

Last document update: 5 months ago

Preview 1 out of 2  pages

  • May 17, 2024
  • July 10, 2024
  • 2
  • 2023/2024
  • Summary
avatar-seller
Hoofdstuk 10
Complexe eigenwaarden


Complexe vector- en matrixbewerkingen
Eigenschappen:

 𝑥̅̅̅̅̅̅̅
⃗ + 𝑦⃗ = 𝑥⃗̅ + 𝑦̅⃗
 ̅̅̅̅
𝛼𝑥⃗ = 𝛼 ∙ 𝑥⃗̅
 [𝐴̅]ij = ̅̅̅̅
[𝐴]ij → het element op de ide rij en jde kolom van de complex toegevoegde matrix is hetzelfde als
het element op de ide rij en jde kolom van A nemen + complex toegevoegde ervan nemen
 ̅𝑥⃗𝑦
̅̅̅⃗ = 𝑥⃗̅ ∙ 𝑦̅⃗



Berekenen van complexe eigenwaarden
Net hetzelfde als bij gewone eigenwaarden om de eigenwaarden/vectoren te berekenen, wel rekening houden
met de rekenregels voor complexe getallen

Als λ een complexe eigenwaarde is vd vierkante matrix A, dan is 𝝀̅ ook een eigenwaarde, z’n complex
toegevoegde



Discrete dynamische systemen
Stel een vierkante matrix A met complexe eigenwaarde λ = a – bi met een bijhorende eigenvector elem van ICn

A valt dan te schrijven als (ontbinding van A):


 Heeft niet met diagonalisatie te maken

Herschrijf A als = PCP-1

Met a het reëel deel van λ en b het imaginair deel in 𝜆 en in P de reële delen van de eigenvectoren die in de
eigenruimte dat horen bij die eigenwaarde onder elkaar en in de tweede kolom de imaginaire delen




!!!heeft niets met diagonalisatie te maken!!!

C kun je schrijven als de modulusmatrix R (herschaling met factor r) maal de rotatiematrix

Met R = de modulus op de hoofdiagonaal van de eigenwaarde = √𝑎2 + 𝑏²




a + bi zien als x + yi, rcost = x = a, -rsint = -y = -b, …

Als r = 1 zal er geen herschaling gebeuren, r>1 → verder van oorsprong
!!! -b in C stel λ = a - bi voor, worden veel fouten tegen gemaakt, je moet het dus niet nog eens negatief maken

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller BioIngenieur. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $2.68. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

52510 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 14 years now

Start selling
$2.68
  • (0)
Add to cart
Added