100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Samenvatting Formularium statistiek, deel 2 $3.77
Add to cart

Summary

Samenvatting Formularium statistiek, deel 2

1 review
 3 purchases
  • Course
  • Institution

Dit is een formularium van statistiek, deel 2 Het bestaat uit 1,5 A4 waardoor er nog een beetje plek is om zelf dingen te noteren, bv. formules uit statistiek, deel 1

Last document update: 8 months ago

Preview 1 out of 2  pages

  • May 24, 2024
  • June 6, 2024
  • 2
  • 2023/2024
  • Summary

1  review

review-writer-avatar

By: Mattice • 6 months ago

Translated by Google

Everything I need is in there and is readable. Saved me a huge amount of time.

avatar-seller
MODELLEN PARAMETERSCHATTING HYPOTHESETOESTING Stappenplan type-1 fout:
Voor discrete variabele Puntschatting Stappenplan: tweezijdige en eenzijdige alternatieve hypothesen 1. Hypothesetoetser:
BERNOULLI: X~Bern(θ) → twee mogelijke uitkomsten Kwaliteit van de schatter 1. ℋ1 en ℋ) opstellen a) Kies toetsstatistiek
𝜃 = kans op succes met 0 < 𝜃 < 1 Zuiverheid: 𝐸[𝜃W% ]=θ 2. 𝛼 en n bepalen b) Bepaal steekproevenverdeling onder ℋ1
1- 𝜃 = kans op mislukking Asymptotisch zuiver: lim 𝐸X𝜃W% Y = 𝜃 3. Bepalen toetsstatistiek en steekproevenverdeling onder ℋ1 c) Beslissingsregel
%→0
µX = θ σX2 = 𝜃(1 − 𝜃) 4. Berekenen van ts
Nauwkeurigheid/betrouwbaarheid: 𝜎*D$ zo klein mogelijk
9 5. Verdachte waarden/staarten zoeken 2. Waarheid:
BINOMIAAL: Y~Bin(n, θ) → n iid herhalingen bernoulli-exp. Mean squared error: MSE = 𝐸 ZX𝜃W% − 𝜃Y [ = 𝜎D9 + (𝐸]𝜃W% ^ − 𝜃)² *$ 6. Beslissing via kritieke waarden of p-waarde a) Steekproevenverdeling onder ℋ1 en ware
- Independent: muteel statistisch onafhankelijk MSE is variantie van de schatter als deze zuiver is a) Kritieke waarde: steekproevenverdeling zijn identiek
- Identically distributed: identiek verdeeld = stationariteit Consistent: lim 𝑀𝑆𝐸 = 0 - Tweezijdig toetsen: b) P(type-1 fout) = 𝛼
% →0
Bern(θ) = Bin(1, θ) n ≠ steekproefgrootte - Zoek 𝑧)∗ en 𝑧)&

- lim 𝜎D9 =0 )
0<Y<n Xi ~!!" 𝐵𝑒𝑟𝑛(𝜃) %→0 *$ ! !
T-toetsen
𝑛 - lim 𝐸X𝜃W%Y = 𝜃 - Kritisch gebied:
𝜋# (𝑦) = 𝑃(𝑌 = 𝑦) = 1 2 ∙ 𝜃 $ ∙ (1 − 𝜃)%&$ %→0 ∗
𝑧)& ∗
) ≤ ts of ts ≤ 𝑧)
1 steekproef op ZTW
𝑦 ! ! 6G&<"
µY=nθ σY = 𝑛 ∙ 𝜃 ∙ (1 − 𝜃)
2 - 𝜎6 gekend: z-toets: Z = =" ~ N(0,1)
ccc%
Steekproevenverdeling en statistiek 𝑋 - Eenzijdig toetsen: L
√%

Voorwaarde: trekking ZTW → X’s iid - Zoek 𝑧)&K (rechts verdacht) of -
6G& <
𝜎6 ongekend: t-toets: T = M* " ~ 𝑡"OP%&) met
GEOMETRISCH: Z~Geo(θ) → tijd (discreet) tot eerste succes ccc /.…/6$ 𝑧K∗ (links verdacht) "N
𝑋% = % ! √%
𝜃 = kans op succes bij elk bernoulli-experiment %
- ∗
Kritisch gebied: 𝑧)&K ≤ ts )
𝜇6G$ = 𝜇6 → ##
𝑋##& is een (asymptotisch) zuivere schatter van 𝜇' 𝑆′6 = n ∑(𝑥! − 𝑋c)² en df = #vrijheidsgraden =
Z = [1, +∞]: oneindig bereik ! (rechts verdacht) of 𝑧K∗ ≥ ts %&)
="
𝜋' (𝑧) = 𝑃(𝑍 = 𝑧) = (1 − 𝜃)(&) ∙ 𝜃 𝜎6G9$ = → hoe groter n, hoe betrouwbaarder de schatter ##
𝑋##& b) p-waarde: #onafhankelijke observaties - #te schatten
%
) ()&*) !
µZ= σZ2 = ccc% = =" dus lim 𝑀𝑆𝐸 = 0 → 𝑋
MSE 𝑋 #### - Tweezijdig toetsen: parameters
* *! & is een consistente schatter van 𝜇'
% % →0
- ts negatief: 2∙P(TS ≤ ts)
Eigenschappen:
POISSON: Y~Poisson(λ) → aantal successen in tijd of ruimte ! - ts positief: 2∙P(TS ≥ ts) Intervalschatting:
="
λ = verwacht aantal successen in gekozen eenheid met λ > 0 - Als X~N(𝜇6 , 𝜎69 ) dan is ccc
𝑋% ~N 9𝜇6 , : - Eenzijdig toetsen: -
=
𝜎6 gekend: niveau C BI voor 𝜇6 is 𝑥̅ ± 𝑧 ∗ ∙ "
% √%
Assumpties poissonmodel: - Als X≁N(𝜇6 , 𝜎69 ) dan centrale limietstelling: - Links verdacht: P(TS ≤ ts) *
Q"
- 𝜎6 ongekend: niveau C BI voor 𝜇6 is 𝑥̅ ± 𝑡 ∗ ∙ →
- Voorkomen van gebeurtenis in stukje tijd is onafhankelijk van 𝜎9 - Rechts verdacht: (TS ≥ ts) √%
voorkomen gebeurtenis in ander niet-overlappend stukje tijd
ccc% ≈ N g𝜇6 , 6 h
𝑋 foutenmarge is ongelijk voor verschillende
𝑛 - Kritisch gebied:
- Mate waarin gebeurtenis voorkomt binnen stukje tijd is steekproeven
Voorwaarde: - 𝑝 ≤ 𝛼 → ℋ1 verwerpen
proportioneel aan grootte van dat stukje: Yt ~Poisson (λt)
- Als n>30 → als n<30: enumeratief - 𝑝 > 𝛼 → ℋ1 aanvaarden
lim 9%: ∙ 𝜃 $ ∙ (1 − 𝜃)%&$ met 𝑛 ∙ 𝜃 = 𝜆 Significantietoetsing t-toets is idem als bij z-toets
%→ /0 $ - Als steekproeftrekking op ZTW
*→1
𝜆$ &2 - Gevolg centrale limietstelling: Link tussen toetsing en BI
𝜋# (𝑦) = 𝑃(𝑌 = 𝑦) = ∙𝑒 X~Bin(n,θ) → X≈N(nθ,nθ(1-θ)) Enkel bij tweezijdig toetsen: ts = hoeveel SD 𝑥̅ afwijkt van µ₀ Vergelijken van 2 gekoppelde paren (afhankelijke steekproeven)
𝑦! (6G&#G)&(<"&<#)
𝜇# = 𝜆 σY2 = 𝜆 Voorwaarde: - 𝜇6 − 𝜇# als 𝜎6&# gekend : Z =
="
+,#
+
- Als nθ ≥ 15 en n(1-θ) ≥ 15 BI: alle waarden die op basis van geobserveerde data niet
~ N(0,1)
Voor continue variabele - Als ZTL: N ≥ 20n significant verchillen van ware µ (6G&#
G)&(< &< )
- 𝜇6 − 𝜇# als 𝜎6&# ongekend= T = M* " #
EXPONENTIEEL: T~Expon(λ) → tijd (continu) tot eerste succes - Pas continuïteitscorrectie toe ",#N
√%
λ = verwacht aantal successen in gekozen eenheid met λ > 0 Power ~ 𝑡"OP%&)
Assumpties expontentieel model: zelfde als poissonmodel Continuïteitscorrectie: Soorten fouten
&2∙5 Binomiaalkans Via N met continuïteitscorrectie ℋ1 waar ℋ1 vals
𝜑 3 (𝑡) @𝜆 ∙ 𝑒 𝑎𝑙𝑠 𝑡 ≥ 0
Type-1 fout Correcte beslissing =
Vergelijken 2 onafhankelijke steekproeven
0 𝑎𝑙𝑠 𝑡 < 0 X=c c-0.5<X<c+0.5 ℋ1 Statistisch model: 𝑋c − 𝑌c~𝑁(𝜇6G&#G , 𝜎6G&#
9
G)
𝛷3 (𝑡) = 𝑃 (𝑇 ≤ 𝑡) = 1 − 𝑃(𝑇 > 𝑡) = 1 − 𝑃(𝑌 5 = 0) = 1 − 𝑒 &2∙5 X>c X>c+0.5 verwerpen power/ (6G&#G)&(<"&<#)
) ) onderscheidingsvermogen - 𝜎6 en 𝜎# gekend: Z = ~ N(0,1)
𝜇3 = σT2 = ! X<c X<c-0.5 -! - !
2 2 R "/ #
X≥c X>c-0.5 ℋ1 Correcte Type-2 fout $" $#

X≤c X<c+0.5 aanvaarden beslissing - 𝜎6 en 𝜎# ongekend:
UNIFORM: X~U(a,b) met a < b
1 - Niets bekend over 𝜎6 en 𝜎# :
𝜑6 (𝑥) L𝑏 − 𝑎 𝑎𝑙𝑠 𝑎 ≤ 𝑥 ≤ 𝑏 Intervalschatting Formules:
𝑇=
(6G&#G)&(<"&<#)
≈ 𝑡"OPS
0 𝑎𝑙𝑠 𝑎𝑛𝑑𝑒𝑟𝑠 X waarbij X~N(𝜇6 , 𝜎69 ) of n>30 met gekende variantie → BI of - P(type-2 fout) = P(aanvaarden | ℋ1 vals) * !* !
R. "/. #
𝜇6 =
7/8
σX2 =
(7&8)²
confidence level voor µX met niveau C: - Power/OV = P(verwerpen | ℋ1 vals) $" $#
9 )9 !
! *!
= = - Power + P(type-2 fout) = 1 /* / 1
OG = 𝑋c − 𝑧 ∗ ∙ " BG = 𝑋c + 𝑧 ∗ ∙ " T$ 0 / $ U
" #
√% √%
NORMAAL: X~N(𝜇6 , σX2 ) 𝑧 ∗ > 0 zo gekozen dat C kans is dat een standaardnormaal met k = ! ! ! !
) 6&<" ! verdeelde toevalsvariabele een waarde aanneemt tussen −𝑧 ∗ en 𝑧 ∗
Stappenplan: type-2 fout en power % .*0
/
%
T
.*1
U
1 & ; > $",%V $" W $#,% $#
𝜑6 (𝑥) = ∙ 𝑒 9 =" 1. Hypothesetoetser:
√2 ∙ 𝜋 ∙ 𝜎6 → Satterthwaitebenadering
)&J a) Kies toetsstatistiek
Kwantielen = - 𝜎6 = 𝜎# : homoscedasticiteit
9
="
b) Bepaal steekproevenverdeling onder ℋ1
BIVARIAAT NORMAALMODEL: (X,Y)~N(𝜇6 ,𝜇# ; σX2,σY2, 𝜌6# ) (6G&#G)&(<"&<#)
Foutenmarge: m = 𝑧 ∗ ∙ → daalt bij grotere n, kleinere 𝜎' , kleinere C c) Beslissingsregel 𝑇= ~ 𝑡"OP%"/%#&9
√% % %
𝜑6,# (𝑥, 𝑦) =X$ /$
" #
) B&<" ! $&<# ! 9@"#(B&<")($&<#) met pooled estimator:
1 & ! A; > /; = > & C Andere OG en BG: zie tabellenboekje of toetsstatistiek 2. Waarheid:
= ∙ 𝑒 9()&@"#) =" # ="=#
!
(%"&))∙Q* 0/(%#&))∙Q* 1
!
9
2𝜋𝜎6 𝜎# T1 − 𝜌6# uitwerken naar parameter a) Bepaal ware steekproevenverdeling 𝜎9 =
%"/%#&9
b) Bereken gevraagde → gebruik ware gegevens
Keuze model Intervalschatting:
Continu: normaalmodel, exponentieel, uniform - 𝜎6 en 𝜎# gekend: niveau C BI voor 𝜇6 − 𝜇# is
Discreet: ! !
=" =#
- Eindig waardegebied: bernoulli, binomiaal 𝑥̅ − 𝑦c ± 𝑧 ∗ ∙ n +
%" %#
- Oneindig waardegebied: geometrisch, poisson - 𝜎6 en 𝜎# ongekend: niveau C BI voor 𝜇6 − 𝜇#
is 𝑥̅ − 𝑦c ± 𝑡 ∗ ∙ 𝑆𝐸 met SE = onder de breukstreep

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller emilievanhecke. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $3.77. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

67479 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 15 years now

Start selling
$3.77  3x  sold
  • (1)
Add to cart
Added