100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Oefenzittingen Wiskundige Modellen @GroepT $9.64
Add to cart

Class notes

Oefenzittingen Wiskundige Modellen @GroepT

 47 views  2 purchases
  • Course
  • Institution

Dit document bevat enerzijds, zo goed als alle oefeningen in de selectie voor het vak, en anderzijds een mooi overzicht van bepaalde belangrijke formules / stramienen om te volgen bij het maken van oefeningen uit ieder hoofdstuk. Bij de oefeningen zelf staan hier en daar wat annotaties om verduidel...

[Show more]

Preview 4 out of 18  pages

  • May 25, 2024
  • 18
  • 2022/2023
  • Class notes
  • Koen eneman
  • All classes
avatar-seller
1
. Functies meerdere
veranderlijken
1 . f(x y) ,
= x3 -

2xy + 3y2
al f( -
2, 3) = -

8 -

2( -
2 .

3) + 3(9)
= 31


a f(z ) ,
=
()" -
2 .



z - -

+ 3 .


(2)
-
=
+
E

2) f(x y + u) f(x y) X 2x(y + n) 3(y u) x 3x
-


+ + 2xy
-
, ,
=
-
+ -




K
K

-

-
2xy -
axn + 3(y* + 2yn + 4) -xy
-
3yh
=


U


2xn + 3y2
- + 6y4 + 342 -
3y
-
2

=- =
-
2x + 6y + 3n
K

3
. Bepaal domf(x Y) :
,



(n((16 yz(x* + y 4)) (n((x 16)(x y2 4)
*

a) f(x , y) = -
x" - - = + ya -
+



↳ In (x) als x 0 -e man niet !
↳ 4 < X+ <16 is het domein

b) f(x y) ,
= 6 -

2x -

34

↳ 6-2x 3y)/ -
0




2 Particle
.
Afgeleiden
1 2 15te + 29 Orde
.
Particle afgeleide
x2
.




b) f(x y) ,
=
- x + Y
-xY
X + Y
a) f(x , y) =
3xy-Siny
2x(x + y) x() Y(x + y) xy()
=
CSS
-
-




Als er wordt
gevrage
-




(x + y)2 xz :

(x + y)2
bereuen 1 24 orde :
2x + 2xy -
x xy + y -
xy X
+


= -


> oou
gemengde doen !
-



x+ y2 x*+ y


(Gyn
2xy + 2xy +


Dit is een soort 24 Orde
X3
=
+ 2 xy + y2 = 1

x2 + 2xy + y2 X



x2
xX d) f(x y)
+


Gf/by =
- ,
= e

x+ 2xy + y2


1
x3 + x y -
x - x+ xy + xY
=


x + 2xy + yz



=
1




Let
=
10 0,



O
exy y x2
=

10 0) +
2xy2
+
,
+ 2xy .
·
2xy = 2xe + .
2xe

= 2xe
+
Y(2xy + 1)
3
.
& in (1 1) ,
voor 2(x y) ,
=
xarctan
(

() (y) ()(1 m ) ()(x y m 1) 2x(x + y ax 1)
= + =
+ -
2x
+
m
- + +
(x" 1)2
+ =
+
+ y -
2y +


P(1 1) , invullen geeft :




3It

, . bereuen da
8 voor z = xY-34 9
. a) Adhv Particle afgeleiden :

d2(x y)

,

= GY
U(X y) ,
= x2 -
ex
- -
&
) e
U
totale -x
= 2x . ex + x?) - .




differential
= 2xydx + (x2 3)dy -

*
= e (2x y) -




vian door (1 ,
2 , 2(1 , 2) = xe
↓ du =
(e
**
(2x y))dx
- +
(xe x)dy
*




enz-2(n 2)

,
=

( x)) -




,,
1 2
,
+
z(4 41)) -




,1 2)
,
= X-e"x



↳ Lo
2(1 2) ,
= -
4
-2xy 2) Rechtstreens :




df(x z) , y,
=

G+ +
*In =
2 .
1 .
2 : 4
,1 , 2
= -2


y2d(8xy +23) y 23d(3x2 y2)
d8xy 23 3x 8x
-




=
(= ) z =
4(x 1) -
-

a(y 2) -
-
4
3x2Y2 (3x2y2)2
() z = 4x 4 -
2y + 4 4


8(y
- -




23dx xy2d(23)]
-


()
d(8x 23) +
= + x23b(yz) +
0 =
4x =
2y -
2 -
4




d(3x + 2) =
3(y2d(x)) + x zdy + x ydz]
186 . Bereuen dy/dx : 18 .
f(x , y) = 1 -
x -
1 -
y
= 1



In-InF ()1 1
y
InE-Incy
1
-

x =
-




ax-2Y
-




= 2 Es =




(x) ) 2y)a
X -

Y
+ = -




eerst x en y apart,
=) InV-ax = Inty-2y dezedan afleiden


(
(
-
# -
2)ax =
-

2)dy


( 2)dx ( 2)dy
1 -
x
= - =
-




192 .
dy/dx en dy/dx' bepalen :




-
x + cos(x + y) = 0




&
Es





3
. Vervolg 101
,
12
,
13
,
16
,
20b
,
21


102 .
Richtingsafgeleide :




F(X ,
y, 2) =
Xy2 -
y2 in P(2 ,
1
,
1) en S(v .
1
, -1)


= 2 =
(2) =
: Welke

Fi =
richting snelste toename ?


: x2-2y
-

=

(5 . , 5 =
[Y2 ,
xz -
2y , xy]i
Schrijven
E
mag ook 20 :



Fi
=Y
=
x y
8f =
(y2 x2 2y xY) deze vector
- volgens
-



, ,



das Of (2 ,
1 1) =
(1 0, 2) Stijlste helling
F
, ,

-
Fi (2 ,
1
, 1) =




met grootte =
1+ 2 =
55


&
=Pos
12 .



Berenenen voor T = X-XY + y met
Y =
PSinO




**
2



xTy t = (3x y)(oso -
+ ( -
x + 3y2)sino
X Y


·
-



↳ - ↓
GTo (3xy)(-Psino) + -x + yos
B O
* Sino 00

, 2x-y et
Berenen
13
. in to voor U =




u↑
& Y

2
=



=
z

3e
-
t
t
+ 1 =


[ ↳
Y


Ed
=
= 4x +
2
dus = o
= 27
= cost dus
lo
=
S
-

2
dus t=
= -3




= -

Y+ 3x2
dus =
-




= = 27 2 + ( 3)( ) + ( -( -3) = 6



16 .
Toon aan dat U(X ) ,
E
met so voldoet an :




( ( ( + () + =




= ( + " met
X

1 1
el
Y
cos
en si

A O

=

(cos + sind)
=
( *" coso 2/cssin) + + sinc



= metpin enc
= /) sino-2(sinoco
=

( Sino-2(sin + cos
RL =
(*) coso &(csin) + + Sinc + Sino-A/sinc) 1205 +




=

(*) coso 1 since + +
1 Sino 12. cos28 +




=
( *) (coso Sino) () (Sintcos + +


"M 1

=
( () = +




zob .
Bereuen een
uitdrunning die de gevraagde Partiele afgeleiden bevat,

O .
b . v .

volgende implicite definitie :




G Bereuen de numeriee waarden in (ab , = 2 ,


voor f(a ,
b, c) = a coshb-ab + c -
5 = 0 = )df = 0



If (ad(b)
2
= a d(coshb) + coshb -
d(a)) -
+ bd(a)) + d() = 0

= a 2 Sinhb db .
+ 29 coshbd(a) -
adb + bd(a) + b(c) = 0


=
(a 2. sinhb- a) db + 12acoshb -
b)da + d = 0


& da2
E E
= 2
(2acoshb-b) da 1dC -
4 .
0 + 2
db = ·

-asinb-a -
a "Sinb-a

/12 ,
0
, 2)
=
dc =

-
40 + 2
=
2

, ba (a 'Sinhb-a) =
b-zacoshb
ba (a'Sinnb-a) + b'a(2asinhb +
acosh-1 = -co
ba (4 0-2) .
+ 2(4 0 .
+ 4 -
1 . 2 = 2-4-1 .
2

-

2b"a + 8 = 6

ba = 7




21 1"Orde Partiele
.
afgeleide van z als 2 impliciet gedef . Wordt dr :

arctan (xy2)
E maw
ten
=
zoen
-




() Xyz = tan
[1
(z)xyz +
an = g
-




1


=> y2dx + x2dy + xydz = 0


() Xydz = -
yadx -

x2dy

)dz =
- -
()dz = -


Edx zdy -




d ↳
= =-
. Optimalisatie
3 1, 2
,
3 ,
5 ,
6 ,8

1
. Stationaire Punten van F(x , y) = 5x2 + 4x + x y + y"




I1 )
=




=
Of



&
10x


4y3 +
: (10x + 2xy , 4y3

+ 2xy2

2x y
=




+ 4
--
=
+ 2x



0()x(10 + 2y2) = 0()x = 0

0()4y3 +
y + 4)



4 =
= 0



0()y3 = - 1()y = -
1




=> (0,-1) is Stationair



deth 10 ...):
I (01)
=
10 +




Y*12x2 +
2424xY


2x10 ,
=




-2)
170


012
=
144 10 =


>
-
(0 -1) ,




welke
is extremum

soort ?
!



a
Ly,
-


= 10 +




=
Lonaal Minimum

. Lagrange multiplicatoren
2
f(x ,
y
,
x) =
f(x y) ,
-
t .

g(x 4) ,


=>
((x ,
y ,
+) = x + 4y -
2x + 8y -
+ (x + 2y -
7)


= 2x - 2 -




+, = 84 + 8 - 2 , =
-

(x + 24 -
7)

- Allen O (want we stellen XC(x Y x) =)
aan
gelijn Stellen : , ,




2x -
2 -
+ = 0 (= + = 2x -
2

.
8 -
8 -
24 = 0 ()4y -
4 -
X = 0E)2X -
2 = 4y -
4( = ) X =
2y -
1



x(x + 2y 7) 0( 2y

04 3
- = -
1 + 2y -
7 =


=
P(3 4),




(4
=
= 4)

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller alex66. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $9.64. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

52510 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 14 years now

Start selling
$9.64  2x  sold
  • (0)
Add to cart
Added