100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Samenvatting Medische Statistiek 2, examennota's $11.36
Add to cart

Summary

Samenvatting Medische Statistiek 2, examennota's

 51 views  0 purchase
  • Course
  • Institution

Het examen medische statistiek is open boek, dus je mag alle slides en nota's meenemen. Het examen bestond voornamelijk uit de eerste 3 hoofdstukken. Ik heb ze van de lesopnames volledig samengevat en uitgelegd met voorbeelden zoals ze op het examen voorkomen. Met deze samenvatting heb ik een 15/20...

[Show more]

Preview 4 out of 38  pages

  • May 25, 2024
  • 38
  • 2023/2024
  • Summary
avatar-seller
Samenvatting Medische Statistiek 2
2023-2024, prof. Abrams


Inleiding
● Op examen zelf moeten we R niet kunnen gebruiken
● Aanwezigheid practicum: 1 punt /20
● Examen → FORMULARIUM + REKENMACHINE meenemen!!
○ Multiple choice vragen
○ Open vragen: oefeningen, interpretatie, R output,..


Statistiek 1: Beschrijvende en inferentiële statistiek (Herhaling)

Beschrijvende statistiek - weergeven van gegevens
Inferentiële statistiek - verklaren; je gaat vragen beantwoorden, groepen met elkaar vergelijken, conclusies
trekken, interpretaties doen naar de vraag die je wil beantwoorden

Basisconcepten
● Population (populatie) - groep mensen waar je in geïnteresseerd bent
● Sample (steekproef) - een kleine groep representatief voor de populatie
● Statistisch significant - een bewijs van een verband, causaliteit, ..
● Klinisch relevant - een onderzoek kan statistisch significant zijn maar niet klinisch relevant (vb. een
medicijn die de levensduur van een patiënt met 1 dag verlengt)
● Experimentele studies - Het bestuderen van de effect van de behandeling; je wil causale verbanden
vinden (vb. clinical trials → r andomisation, blinding, placebo)
● Observationele studies - Geen actieve interventie van de onderzoeker, je kan niet alle factoren
onderzoeken. Enige wat je kan aantonen is of er een relatie bestaat (niet per se causaal).
● Kwalitatief (categorical) onderzoek - niet meetbare gegevens
○ nominaal - groepen (geslacht, regio,..)
○ ordinaal - specifieke ordening (goed-matig-slecht, ..)
● Kwantitatief (continuous) onderzoek - meetgegevens
○ discreet - Discrete data verwijst naar gegevens die alleen specifieke, afzonderlijke waarden
kunnen aannemen en geen tussenliggende waarden hebben.
■ aantal autos in parking
■ aantal zwangere dames in UZA
○ continu - Continue data zijn gegevens die een oneindig aantal mogelijke waarden hebben
binnen een bepaald bereik. Ze kunnen elke numerieke waarde aannemen binnen een bepaald
interval.
■ lengte / gewicht
■ temperatuur
● Afhankelijke data (dependent) -
● Onafhankelijke data (independent) -
● Samenvattende data:
○ Locatie (gemiddelde, mediaan, kwartielen)
○ Variatie (variantie, standaardafwijking (wortel van variantie), bereik (maximum - minimum) ,
interkwartiel afstand (afstand tussen de eerste en derde kwartiel))
1

,Oefening:
1. lengte - kwantitatief continu
2. Oogkleur - kwalitatief nominaal
3. dagelijkse nummer autoaccidenten in vlaanderen - kwantitatief discreet
4. body mass index - kwantitatief continu
5. AVI leesniveau A1-A7 - kwantitatief ordinaal


Een boxplot




Q1 - eerste kwartiel
Q2 - derde kwartiel
Me - mediaan
X(1) - eerste waarde
X(n) - laatste waarde
→ kijken naar symmetrie in de box zelf


Toetsen van hypothese
Onderzoeksvraag → je zet die om naar hypotheses
● Nulhypothese (H0) - De nulhypothese is een statement dat stelt dat er geen effect is of geen verschil
bestaat. Het wordt vaak geschreven als een statement van geen effect of geen verandering. Je moet de
nulhypothese verwerpen om een effect aan te tonen.
● Alternatieve hypothese (H1) - De alternatieve hypothese is de tegenhanger van de nulhypothese. Het
stelt dat er wel een effect is, een verschil bestaat, of er een relatie is. Het is hetgeen waar je naar zoekt
om te bewijzen.
Bij het uitvoeren van statistische tests, wordt gegevensverzameling gebruikt om te bepalen of er voldoende
bewijs is om de nulhypothese te verwerpen en te concluderen dat de alternatieve hypothese waarschijnlijker
is. Dit wordt vaak gedaan door het berekenen van een p-waarde, die aangeeft hoe waarschijnlijk de
waargenomen gegevens zouden zijn als de nulhypothese waar is. Als de p-waarde klein genoeg is (meestal
kleiner dan een vooraf bepaald significantieniveau, bijvoorbeeld 0,05), verwerpen we de nulhypothese en
accepteren we de alternatieve hypothese.

We kunnen foutjes maken:
Type 1 fout = verwerpen van de hypothese terwijl die juist is
Type 2 fout = niet verwerpen van de hypothese terwijl die fout is


Algemene procedure
1. Toetsprobleem formuleren
2. De juiste statistische test gebruiken (steekproef n<30 = klein; n>30=groot)
3. kritische waarde opstellen /P-waarde berekenen (moet kleiner dan 0.05 zijn)
4. conclusie formuleren

2

,Extra uitleg puntje 3
● Kritische waarde




Alfa = het procent significantieniveau (meestal 5%)
eenzijdige test = alfa
tweezijdige test = alfa/2 (kritisch punt: - 1.96 en +1.96)
→ als de waarde die je vindt voor je toetsingsgrootheid extremer is dan kritisch punt (in gearceerde gebied)
dan verwerpen we de nulhypothese

● P-waarde
→ een statistische maat die wordt gebruikt in hypothese testen om te beoordelen of er voldoende bewijs is om
de nulhypothese te verwerpen. Het geeft de waarschijnlijkheid aan om de waargenomen resultaten te
verkrijgen, onder de veronderstelling dat de nulhypothese waar is.
→ onder 0.05 = statistisch significant


Statistische testen die twee of meer variabelen vergelijken

continuous = kwantitatief
nominal = groepen
ordinal = ordes
dichotomous = binair (0 of 1)
vb. ziek en niet-ziek

gepaarde gegevens= als 1 persoon 2 keer
wordt opgemeten of tweelingen; gegevens
in associatie met elkaar



→ enkel degene kennen die besproken
worden




3

, Parametric methods
Parametrische methoden in statistiek verwijzen naar analytische technieken die aannames doen over de
vorm van de verdeling van de populatie waaruit de gegevens afkomstig zijn. Deze methoden vertrouwen op
parameters, zoals het gemiddelde en de standaarddeviatie, om de eigenschappen van de populatie te
beschrijven. Parametrische methoden hebben vaak krachtige statistische eigenschappen, maar ze zijn
gevoeliger voor de aannames die worden gemaakt over de populatieverdeling. → GAUSS CURVE
Belangrijk om op te merken is dat parametrische methoden vaak aannames doen over de populatieverdeling,
zoals de veronderstelling van normaliteit en homogeniteit van varianties. Als deze aannames niet geldig zijn
(vb. kleine steekproef), kunnen de resultaten van parametrische tests vertekend zijn. In dergelijke gevallen
kunnen niet-parametrische methoden een alternatief zijn, omdat ze minder strenge aannames vereisen.
● One sample T-test / Paired T-test
● Unpaired T-test
● Repeated measures ANOVA
● One-way ANOVA




ONE SAMPLE T-TEST
Een one sample t-test is een statistische test die wordt gebruikt om te beoordelen of het gemiddelde van een
enkele steekproef significant verschilt van een bekende of aangenomen populatiegemiddelde. Het is geschikt
wanneer je geïnteresseerd bent in het vergelijken van het gemiddelde van een steekproef met een theoretisch
verwacht gemiddelde.
● Er is geen controlegroep hier; eensteeksproefsprobleem

Experiment: Het gemiddelde gewicht van baby’s van arme moeders in UK is μ0 = 2800 gram. Er wordt een
verzorgingsprogramma geïntroduceerd om het gewicht van die baby's bij geboorte te doen stijgen. In totaal, n
= 25 moeders, allemaal die in armoede leven, nemen deel aan het programma.
Onderzoeksvraag: Is het programma effectief op vlak van verbetering van het gewicht van pasgeborenen in
arme gezinnen?
Nulhypothese (H0) - µ=µH0=2800
→ als de programma niet werkt (geen effect; gewicht baby’s zoals ervoor)
Alternatieve hypothese (H1) µ>2800
→ programma werkt (effect; gewicht baby’s stijgt)
- steekproef: n=25; n<30 → steekproef is klein
- populatievariantie kennen we niet
→ We maken gebruik van een T-test
→ we gaan kijken naar tabel voor T-verdeling
→ alpha = 5%
4

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller smartmedstudent. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $11.36. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

51683 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 15 years now

Start selling
$11.36
  • (0)
Add to cart
Added