DISCUSIÓON Y RESOLUCIÓON DE SISTEMAS DE ECUACIONES LINEALES
DISCUTIR UN SISTEMA DE ECUACIONES es 2x−3y+az=2 2 −3 a
decir cuantas soluciones tiene (0,1 o infinitas) "−2x +4z=−3 MATRIZ DE COEFICIENTES A= −2 0 4
RESOLVER UN SISTEMA DE ECUACIONES es 2ay+3z=1 0 2a 3
describir las soluciones (cuando las haya) x 2
MATRIZ DE INCOGNITAS X= y MATRIZ DE TERMINOS INDEPENDIENTES B= −3
z 1
TEOREMA DE ROUCHEi FROBENIUS l(TRF
OBSERVA: Rg(A*) ≥ Rg(A)
Dado un sistema de ecuaciones lineales con m ecuaciones y n incognitas, siendo A la matriz de coeficientes de las
incognitas, y A* la matriz ampliada formada por (A| B), siendo B la matriz columna formada por los terminos 2 −3 a 2
independientes del sistema, entonces se cumple que si::e A*= −2 0 4 −3
Rg(A) = Rg(A*)=n=nº incognitas SISTEMA COMPATIBLE DETERMINADO → S C D (1 SOLUCION) 0 2a 3 1
MATRIZ AMPLIADA
Rg(A) = Rg(A*)<n=nº incognitas SISTEMA COMPATIBLE INDETERMINADO→ S C I (INFINITAS SOLUCIONES)
Rg(A) ≠ Rg(A*) SISTEMA INCOMPATIBLE → S I (0 SOLUCIONES) EN LOS SCD
REGLA DE CRAMER A ≠0
Un sistema es HOMOGENEO si todos sus terminos Podemos resolver sistemas compatibles determinados (SCD) usando esta regla:
independientes son 0, por lo que rg(A)=rg(A*) siempre |B C2 C3|
x= Sustituimos en la matriz A la columna
Si rg(A) = nº incogitas, es SCD (1 SOLUCION). La unica A
solucion seria la solucion trivial, es decir, x=0, y=0 … |C1 B C3| correspondiente a los coeficientes de la
y=
Si rg(A) < nº incognitas,es SCI (infinitas soluciones). Una de A incognita x,y,z… por la matriz
|C1 C2 B| columna B de terminos independientes
ellas siempre es la solucion trivial. z=
A
DISCUSION Y RESOLUCION DE SISTEMAS CON PARAMETRO k
EL SISTEMA TIENE EL MISMO Nº DE ECUACIONES Y DE EL SISTEMA TIENE Nº DISTINTO DE ECUACIONES QUE DE
INCOGNITAS (n) INCOGNITAS
1º Estudiar el rango de A. Para ello calcular A =0 1º Estudiar el rg(A*) segun los valores de k
2º Resolver la ecuacion anterior. Las soluciones son los valores a,b,c 2º Segun los valores hallados en el apartado anterior, hallar el
3º Si k ≠ a, b ,c.. entonces A ≠0, por lo que el rg(A)=n, El rg(A)
rg(A*) tambien es n ya que rg(A) ≤ rg(A*) ≤.n. Por el TRF (SCD, 1 3º Discutir con los valores de los rangos usando el TRF
solucionyResolver por Cramer (no sustitutuir k por ningun valor en 4º Resolver cuando sea posible.((Si es SCD y con parametro, se
particular) puede usar la regla de Cramer)
Si k = a sustituir ese valor en la matriz A*, estudiar rango de A y
A* (GAUSS, matriz escalonada) y aplicar TRF Resolver cuando se pueda
1utiliza la matriz de A* escalonada 1 .
RESOLUCION DE SISTEMAS DE ECUACIONES LINEALES EN EL CASO SCD CON MATRICES
Podemos representar el sistema de forma matricial de la siguiente forma: A·X=B, siendo A·X=B
A la matriz de coeficientes de las incognitas, X la matriz columna formada por las EN LOS SCD A ≠0 Y
A-1·A·X= A-1· B
incognitas y la matriz columna B formada por los terminos independientes.
POR LO TANTO EXISTE A-1
The benefits of buying summaries with Stuvia:
Guaranteed quality through customer reviews
Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.
Quick and easy check-out
You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.
Focus on what matters
Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!
Frequently asked questions
What do I get when I buy this document?
You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.
Satisfaction guarantee: how does it work?
Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.
Who am I buying these notes from?
Stuvia is a marketplace, so you are not buying this document from us, but from seller itsd3lay. Stuvia facilitates payment to the seller.
Will I be stuck with a subscription?
No, you only buy these notes for $7.91. You're not tied to anything after your purchase.