Samenvatting Rekendidactiek meten en meetkunde / 2e editie - Pedagogiek en Onderwijskunde
5 views 0 purchase
Course
Pedagogiek en Onderwijskunde
Institution
Saxion Hogeschool (Saxion)
Book
Rekendidactiek meten en meetkunde / 2e editie
Ik ben sinds gisteren afgestudeerd aan de PABO (Saxion Enschede). Ik ga nu al mijn samenvattingen van de gehele opleiding verkopen. Deze samenvatting is duidelijk en en voorzien van de hoofdstukken en verschillende paragraven. Hierdoor is het goed te volgen welke informatie uit welk hoofdstuk van h...
Samenvatting meten en meetkunde
Hoofdstuk 1: Samenhang meten en meetkunde
1.1. Inleiding / meten van inhoud
Het domein meten en meetkunde hebben veel raakvlakken met elkaar. Bij meten gaat het om het
getalsmatig greep krijgen op ‘eigenschappen’ van de wereld, zoals lengte, oppervlakte, inhoud,
gewicht en tijdsduur; dit zijn grootheden. Bij meetkunde draait het om het verklaren en beschrijven
van de ons omringende ruimte. Het gaat dan bijv. om plattegronden, routes, richtingen en
eigenschappen van vormen en figuren.
De essentie van meten is dat een grootheid wordt afgepast met een maat, bijv. de maateenheid
meter voor de grootheid lengte. Een meting levert altijd een meetgetal op, bijv. 2 meter. Voor het
meten kunnen allerlei meetinstrumenten worden ingezet, zoals een liniaal, weegschaal of
maatbeker.
Het in gedachten in elkaar zetten van een bouwplaat, valt binnen meetkunde. De vraag, wat is de
inhoud van een doos, valt onder meten: het gaat om het kwantificeren van de eigenschap inhoud
(een getal ergens aan toekennen). Als kinderen een doos – in gedachten – vullen met kubieke
decimeters, dan zijn ze ruimtelijk aan het redeneren.
Ook in situaties waarin leerlingen ervaren dat een bepaalde inhoud – bijv. één liter – verschillende
(ruimtelijke) vormen kan aannemen, raken meten en meetkunde elkaar. Het gaan om de grootheid
inhoud, dus om het domein meten en het gaat ook om de vormen die de liter aan kan nemen, dus
ook over meetkunde.
In de stelling van Pythagoras komen meten en meetkunde samen. Deze stelling beschrijft een vaste
relatie tussen de drie zijden van een rechthoekige driehoek: a2 + b2 = c2. Zie p. 19 en 20.
De gulden snede is de mooiste verhouding die er bestaat. Ook hierbij meten en meetkunde: in
allerlei meetkundige figuren zijn afmetingen volgens deze verhouding terug te vinden
,Hoofdstuk 2: Meten
2.1.3. Uit de geschiedenis van meten
Als elementaire vorm van meten werden voorwerpen rechtstreeks met elkaar vergeleken. Aan zulke
metingen werd echter geen meetgetal toegekend; dat gebeurde pas toen men maten begon te
hanteren.
Een natuurlijke maat is bijvoorbeeld een lichaamsdeel waarmee een grootheid kan worden afgepast;
bijv. de voet voor de grootheid lengte. P. 33 ; Van het menselijk lichaam afgeleide oude lengtematen.
In het verleden werden maten ook afgeleid van wat mensen redelijkerwijs konden presteren. Zo
werd morgen gebruikt voor de hoeveelheid land die op een ochtend geploegd kon worden: een
tijdsduur als oppervlaktemaat. Dit is een vorm van indirect meten.
Het gebruik van natuurlijke maten heeft meetonnauwkeurigheid tot gevolg: niet alle voeten zijn
gelijk. Daarom werd er per regio een standaard nagestreefd: vaste afgesproken maat. Dit was lastig
voor de handel -> behoefte naar (inter)nationale standaardisering.
Eind van de 18e eeuw: metriek stelsel (stelsel van maten en gewichten). De meter is daarin als
standaardmaat gekozen. Centrale plaats in het stelsel; aan de basiseenheid meter werden andere
maten gekoppeld, zoals vierkante meter voor de grootheid oppervlakte. Ook werd een tientallige
maatverfijning afgesproken (cm, km etc.).
Oude maten die gelijk zijn gesteld aan nieuwe maten uit dit stelsel: liter werd gelijkgesteld aan dm3 /
are aan vierkante decameter/ ons aan 100 gram en pond aan 500 gram.
In een aantal landen, waaronder de VS, wordt een ander systeem gebruikt: het imperiale systeem.
Het gaat hierbij om maten die een historische oorsprong hebben.
2.1.4. Wiskundetaal bij meten
In het metriek stelsel staan de maten en onderlinge relaties beschreven voor de grootheden lengte,
oppervlakte, inhoud en gewicht. Zie figuur p. 36. Aan de basiseenheid meter zijn vierkante meter en
kubieke meter gekoppeld. De maat kilogram is een andere basiseenheid; gekoppeld aan kubieke
decimeter.
Maten die zijn afgeleid van de centrale standaardmaten worden aangegeven met voorvoegsels. De
kilometer heeft als enige centrale maat zelf een voorvoegsel. Eerder was dit gram, maar zo’n kleine
hoeveelheid kan snel verdampen -> daarom kilogram gekozen.
De decimale relatie tussen lengtematen: opeenvolgende lengtematen zijn steeds een factor 10
groter (door de tientallige opzet van het stelsel). Bij oppervlakte is sprake van een kwadratische
relatie: opeenvolgende oppervlaktematen zijn steeds een factor 100 groter (kwadraat van 10). ->
Vierkante dm is 100x zo groot als vierkante cm bijv. Bij de kubische relatie gaat het om een factor
1000.
Decimale maatverfijning is een essentieel kenmerk van het metriek stelsel. Hierdoor kan altijd een
passende maat worden gekozen.
Snelheid -> Samengestelde grootheid. Snelheid wordt namelijk bepaald door een afstand (grootheid
lente) per vaste tijdseenheid (grootheid tijd). De maten km/u en m/s zijn samengestelde maten. Zie
p. 39.
, 2.2.1. Lengte
De grootheid lengte kan over veel verschillende dingen gaan: lichaamslengte, lengte van een gang
etc. Ook omtrek is een vorm van lengte. Lengte kan ook afstand inhouden (van school naar huis).
De omtrek van een figuur kun je bepalen door (in gedachten) een touwtje om de figuur heen te
leggen. De lengte van het touw, is de omtrek. Omtrek van een cirkel:
Pi x diameter
Pi x straal x 2
2.2.2. Oppervlakte
Bij de oppervlakte van een voorwerp kun je denken aan de hoeveelheid materiaal (verf, stof, papier)
om dat voorwerp volledig te bedekken. Een van de standaardmaten van oppervlakte is vierkante
meter. Een andere oppervlaktemaat is de are, die 10 bij 10 (100m2) meet.; centiarie (1 bij 1 meter,
dus 1m2); hectoare (100 bij 100 meter, dus 10000 m2).
Voor oppervlakte is geen meetinstrument voorhanden. Het bepalen van oppervlakte kan
plaatsvinden via afpassend meten, bijv. met een rooster van hokjes. Zie p.45.
The benefits of buying summaries with Stuvia:
Guaranteed quality through customer reviews
Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.
Quick and easy check-out
You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.
Focus on what matters
Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!
Frequently asked questions
What do I get when I buy this document?
You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.
Satisfaction guarantee: how does it work?
Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.
Who am I buying these notes from?
Stuvia is a marketplace, so you are not buying this document from us, but from seller boukjekeizer. Stuvia facilitates payment to the seller.
Will I be stuck with a subscription?
No, you only buy these notes for $7.68. You're not tied to anything after your purchase.