100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada
logo-home
Statistical Inference Summary $9.99
Añadir al carrito

Resumen

Statistical Inference Summary

 0 veces vendidas
  • Grado
  • Institución

Overview on: - Score Statistics, Maximum Likelihood Estimation (MLE), Fisher Information - Sufficiency and Completeness with Neyman's Factorisation Theorem and Exponential Family - Parameter Estimation: Desirable Properties of Estimators, Method of Moments, MLE and its properties - Cramer-Rao L...

[Mostrar más]

Vista previa 3 fuera de 24  páginas

  • 8 de junio de 2024
  • 24
  • 2023/2024
  • Resumen
avatar-seller
we want to infor the parameters ! In this case ,
we are parametric :
models


Chapter 1 :
a) Likelihood are functions of an unknown parameter .
O


110(U) = Px(NIO) < for a
single case


IID obs , due to independence

(1014) = Px(ip)
,
roan

↳ can
use (101) =
log((10ln)) .


Why ? log transformation

log is an
increasing
is one-to-one
,

function
, >N




Why MLE ? Likelihood
says how likely a value of the parameter is
given the data


to inter from the data :
maximise the likelihood

↳ find of the the data
mostly likely value parameter given .




b) Score Statistic , VIX

vix)


0 ETu(x)]
=
l'10m)

0
=
vologPx(n10) - derivative of
log-likelihood !
Fisher information :↑210) ; distribution changes
·
quickly
=
when
>
-
② var(v(x)) = -
Ele"(Olns] =
210) O departs from 00 ; Oo
estimate well

&
210) =
nicd


c) Sufficiency :




Def :
A partition A of sample space - is called sufficient for O if for all AjzA ,
Px/MO , MEAj)

is independent of 0
.


sufficient stat of without .
0
>
knowing a we can find the probablity an event the need to know
-

,



>
-
E at least I sufficient partition ,
ie.
knowing all the n Idatal outcome




↳ minimal Sufficient

Def If sufficient partition A sufficient paration B set
:
is
a such that
given any other , any
element of B is contained in a set element of A then A is said to be minimal sufficient
.
,




>
If T isAncient
for O and Amplete then T is minimal sufficient (Bahadur Incorem (
-
.


,

, TO FIND SUFFICIENT STATISTIC !!

① Meyman's Factorisation Theorem to this !
- My show


A statistic T is sufficient for 0 Px(u10) =
g(0 , T(x)) n(X) ·




② Exponential Family

If X, Xn are IID from a dist of the
exp family


·
·

,
.
...




Px(n10) =
expLACOBIn) + <10) + D(u)} =
try to show this

lif you start with I obe,
Then T = ZBIXi) is sufficient for 0 to because the [BIxi)
state
.



need
clearly
comes from likelihood :
TTPx (n/0)

from def .




>
-
⑤ T is sufficient for O If

(i) for all n and a such that TIu) = a
,

Px(n10 , T(n) =
a) is independent of .
0


(ii) for all 2 and I',


T(u) E PxIMIO) is of O
=
T(u'l
independent
↑x (n'10)


AND T is minimal sufficient if(you show the other direction ,
is ,
E)

Px(n(0) => T() =
TIu'l

↑ x In '10)




d) completeness

family [PX (410) 083

&
Def :
A :
of distributions on - is called complete

if E[hix)] = 0 for all 00 >
- P(nIX) =
010) = 1 for all .
OE h(X) is a zero function


any statistic n(x)
for such that the above expectation makes sense .


>
- A statistic T is said to be
complete if its
family of distributions &P + CtIO) 08] :
is complete



① Exponential
family

Suppose (X , Xn)
X is IID sample from the probability model
=
..., an


Px(n(0) =
expCAIOBIn) + col + DinI] ,
Do


and let T = [B(Xi) denote the corresponding sufficient statistic.


If & contains an open interval ,
then T is .
complete
↓ (R 1 - 0 , 3)
Eg :
,

space of O

, *
completeness of X =
completeness of the
family of distributions of .
X




Chapter 2 :
Goal :
estimate gloy ,
a function of 0
.


Setting : Let (x) be our estimate of g(0) when we observe X =
.
a



An estimator is a function of the r v
.
.
XI, ...,
Xn
.
-



L 1) Estimator not
should take values outside the parameter space .




I
2) Unbiasedness


E[(x)) =
g(0) +
bg(0)

want bg10) = 0 g(x)] =
g(0) VOzO


desirable 3) small volatility
of Squared Error IMSE) > 0
properties mean -




estimators Def :
McE =
ESigIX)-glOT"] =...



=
var((x)) + (b(0))
4)
Consistency
g(x) +
g(0)asn + 0
,

it .
for every 320 , PlIIX)-gl01K) < 10) + 0 as n+



>
-

E(g(X)] + g(0) and var(g(x)) + 0 as n + & = g(X) is consistent for glo)

construct estimators :




a) method of moments


for the r-th moment, E(x] + x
>
n+ 0
-
,




Exr] = Xi [ law of
large numbers]

[theoretical] =
[data]
Exi
Eg
: Eix] =
N

Los beneficios de comprar resúmenes en Stuvia estan en línea:

Garantiza la calidad de los comentarios

Garantiza la calidad de los comentarios

Compradores de Stuvia evaluaron más de 700.000 resúmenes. Así estas seguro que compras los mejores documentos!

Compra fácil y rápido

Compra fácil y rápido

Puedes pagar rápidamente y en una vez con iDeal, tarjeta de crédito o con tu crédito de Stuvia. Sin tener que hacerte miembro.

Enfócate en lo más importante

Enfócate en lo más importante

Tus compañeros escriben los resúmenes. Por eso tienes la seguridad que tienes un resumen actual y confiable. Así llegas a la conclusión rapidamente!

Preguntas frecuentes

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

100% de satisfacción garantizada: ¿Cómo funciona?

Nuestra garantía de satisfacción le asegura que siempre encontrará un documento de estudio a tu medida. Tu rellenas un formulario y nuestro equipo de atención al cliente se encarga del resto.

Who am I buying this summary from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller nghueyern. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy this summary for $9.99. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

45,681 summaries were sold in the last 30 days

Founded in 2010, the go-to place to buy summaries for 15 years now

Empieza a vender

Vistos recientemente


$9.99
  • (0)
Añadir al carrito
Añadido