Samenvatting van powerpoints + wat in de les werd verteld in het vak Neurowetenschappen deel Fysiologie.
6 Onderwerpen: visueel systeem, motorisch systeem, chemische controle, motivatie, emotie, geheugen.
Bevat alle te kennen informatie maar zo beknopt en gestructureerd mogelijk om optimaal te k...
Het visueel systeem
Functies: zien, houding, evenwicht, voortbeweging, fijne motoriek, regelen circadiaanse ritme
® Grootste sensoriële systeem
Stimuli: lichtsterkte, kleur, contrast, snelheid en richting van beweging
1 Het oog
1.1 Licht
Licht = elektromagnetische straling die zichtbaar is met het oog
® Ondergaat: reflectie (weerkaatsing aan oppervlak), absorptie of refractie (afbuiging)
In het oog, afh. van vertraging licht tussen 2 media ↲
1.2 Anatomie
Uitwendig:
- Pupil
- Iris/ regenboogvlies: + m. sphincter pupillae en m. dilatator pupillae
- Cornea/ hoornvlies: doorschijnend, zonder bloedvaten, met zenuwvezels (gevoelig)
- Sclera
- Uitwendige oogspieren (oogbewegingen dankzij 3 paar extra-oculaire spieren)
Doorsnede:
- Lens: opgehangen aan de ciliaire spieren (regelen kromming lens = accommodatie)
- Voorste kamer: met kamervocht
- Corpus vitreum: glasvocht, gelatineuze substantie, vitreous humor, tussen lens en retina
- Fovea: klein putje, zone van hoge gezichtsscherpte, centrale deel retina
Filling in door hersenen:
- n. opticus: posterieur, t.h.v. papil → hier geen receptoren → blinde vlek ⇒ filling in
- Grote retina bloedvaten komen uit papil → schaduw → geen visuele input ⇒ filling in
↪ t.h.v. macula weinig bloedvaten (in fovea geen) ⇒ gezichtsscherpte
Pathologie:
- Strabisme: scheel kijken, kan op jonge leeftijd aanleiding geven tot amblyopie: verlies van acuiteit
door centrale suppressie van het beeld afkomstig van 1 oog
- Cataract: vertroebelen lens
- Glaucoom: chronisch verhoogde oogdruk → aftserven axonen n. opticus, silent verloop ⇒ screening
vanaf 40y
o Beeldvorming
Lichtstralen (< lichtbron op ∞) vallen parallel in → breking door
cornea → convergeren naar 1 punt op retina
Focusafstand: afstand tussen brekingsoppervlak en punt van convergentie
® 1/focusafstand (m) = dioptrie = eenheid refractieve vermogen
Ø Cornea: 42 D ⇒ lichtstralen convergeren na 24 mm
(1/0,024m = 42)
, Ø Lens: +18 D → +32 D = lens wordt boller (bij dichte lichtbronnen: divergerende
lichtstralen, moeten meer gebroken worden) = accommodatie; ciliaire qpieren
contraheren → spanning ligamenten lens daalt → lens wordt boller (door elasticiteit)
= accommodatie-convergentiesynkinese
↳ beeld omgekeerd geprojecteerd op retina
1.2.1 Bijziendheid en verziendheid
Elasticiteit lens vermindert met leeftijd → presbyopie = ouderdomsverziendheid
Oogbol te lang: beelden worden voor retina geprojecteerd ⇒ myopie: bijziendheid ⇒ divergerende lens
Oogbol te kort: beelden worden achter retina geprojecteerd ⇒ hypermetropie: verziendheid ⇒
convergerende lens
Alternatieve oplossing: Laser assisted in situ keratomileusis (LASK): corneaflap gevolgd door laser die stroma
brandt waardoor de kromming van de oogbol wordt afgeplat
1.2.2 Pupilgrootte
Pupilgrootte regelt hoeveelheid licht die binnenvalt
® Vernauwen = miosis, dilatatie = mydriasis
Ø Scherptediepte: focussen op voorwerpen of verschillende afstand
Ø Correctie sferische aberraties van lens: licht dat op randen lens zou vallen waar er geen
perfecte lichtbreking gebeurt, wordt tegengehouden
Pupilreflex
® Direct: lichtinval in L oog → pupilconstrictie in L oog
Indirect/ consensueel: lichtinval in L oog → pupilconstrictie in R oog
® Onafhankelijk van cortex, via hersenstam en sommige craniale zenuwen bij comateuze patiënten
Ø Test integriteit: afwezige indirecte en directe ⇒ vermoed letsel efferente baan (n.
oculomotorius), afferent intact
Grootte stimulus (t.h.v. retina) uitgedrukt in visuele graden:
§ 280 𝝁m (op retina) = 1 visuele graad
§ 1 cm groot voorwerp op 57 cm afstand projecteert onder hoek van 1 visuele graad
® Belang: afmetingen uitdrukken ongeacht van afstand tot waarnemer (stimuli, visuele veld, receptieve
veld, gezichtscherpte)
Visuele veld van 1 oog = 150° in horizontale vlak, kleiner aan nasale zijde dan temporale zijde
1.3 Microscopische anatomie van de retina
Retina = uitstulping van de hersenen (⇒ reeds hier gedeeltelijke informatieverwerking)
® Lagen van binnen naar buiten:
* Ganglioncellen: axonen lopen naar papil om in myelineschede de n. opticus te vormen
* Bipolaire cellen
* Fotoreceptorcellen
+ interneuronen:
§ Horizontale cellen: laterale synapsen tussen fotoreceptor-bipolaire cel
§ Amacriene cellen: laterale synapsen tussen ganglioncel-bipolaire cel
® Zones
* Papilla nervi (blinde vlek): geen fotoreceptoren
* Macula lutea (gele vlek): geen bloedvaatjes, met in het midden fovea centralis;
- binnenste lagen wijken uit naar lateraal
, - hier wordt het centraal zicht geprojecteerd (gezichtsscherpte)
- centrum retina; scheiding nasale-temporale en superieure-inferieure retina
1.3.1 Fotoreceptoren
Fotoreceptorcel = licht-gevoelige ganglioncel die melanopsine tot expressie brengt
Fotoreceptor Staafje Kegeltje
Gevoeligheid HOOG → NACHT LAAG → DAG
Bouw: outer segment Lang cilindrisch kort
Fotopigment (in Meer minder
sacculi)
Amplificatie Hoog, single Laag
fotondetectie
Temporale resolutie Laag: trage respons, Hoog: snelle respons, korte
lange integratietijd integratietijd
Meer gevoelig aan Strooistraling Directe lichtinval
Mesopisch zicht: staafjes (scotopisch zicht) en kegeltjes (fotopisch zicht) actief
⇒ centrale zicht hogere resolutie, perifere retina hoge gevoeligheid
- Centraal vooral kegeltjes (geen staafjes in fovea), perifeer vooral staafjes
- Totale densiteit receptoren daalt met afstand tot fovea
- In fovea ganglioncellaag lateraal verplaatst → licht kan directer invallen op fotoreceptoren
- In fovea: 2 ganglioncellen per kegeltje + 1 kegeltje per ganglioncel (↔ perifeer: 600 staafjes per
ganglioncel → sterke convergentie fotoreceptoren → lage gezichtsscherpte)
→ reden: voor overal hoge acuïteit is de cortex te klein (en mens kent al fysiologische vroeggeboorte;
schedelomtrek (breedste) moet erdoor kunnen), oplossing: klein scherp gebied GECOMPSENSEERD DOOR
systeem van snelle oogbewegingen
1.4 Spatiotemporele vermogen van het oog
1.4.1 Spatiale resolutie
Spatiale resolutie = gezichtsscherpte, acuïteit, limiet van het spatiale vermogen = kleinste afstand tussen 2
punten die nog als verschillend worden gezien
® Bepaald door:
§ Kwaliteit lenzensysteem
§ Densiteit receptoroppervlak
§ Neuronale factor: mate van convergentie van fotoreceptor op ganglioncel
® Neemt af met excentriciteit
® Test: 2 punten waarbij afstand tussen de 2 progressief verkleint
Ø Normaal (perfect) oog: 0,007 graden (26 boogsec) = 2 𝜇m op retina = 1 mm op 10m
afstand
Ø Klinische grens: 20/20 indien letters van 0,083 graden (op afstand van 20 voet) leesbaar
® Test: sinusoidaal strepenpatroon (gratings) van maximaal contrast, met
progressief toenemende frequentie (↷ aantal cycli per visuele graad;
, 1 cyclus = 1 witte streep + 1 zwarte streep) tot homogeen grijs
Ø Optimale frequentie: 3 cycli per graad
Ø Hoogste frequentie: 60 cycli per graad
Ø Spatiale contrastgevoeligheidscurve: gevoeligheid (1/drempel)
i.f.v. spatiale frequentie
* Per frequentie drempel bepalen: vermindering
contrast tot homogeen grijs per frequentie
* Curve verschuiven naar links onder:
o Excentriciteit (afstand tot fovea) ↗
o Snelheid (bewegend strepenpatroon) ↗
o Belichting ↘
1.4.2 Temporele resolutie
Kritische flikkerfusiefrequentie (KFFF) = maximale frequentie flitsen die nog als verschillend worden aanzien
® Bepaald door:
§ Retinale belichting
§ Afmeting flits
§ Excentriciteit
® (Oude) computer display: 60 Hz MAAR veel visuele gebieden hebben hogere temporele resolutie →
neuronen reageren op elke flits → vermoeidheid
1.5 Fotochemie
1.5.1 Fotopigment
- In sacculi fotoreceptoren
- Bestaat uit opsine (eiwit) + retinal (vitA afgeleide)
o Staafjes: rhodopsine: gevoelig aan golflengte rond 500 nm
o Kegeltjes: iodopsine; 3 soorten (trichromatisme): elk met maximale gevoeligheid voor
bepaalde golflengte
§ S-kegeltjes: 430 nm (blauw)
§ M-kegeltjes: 530 nm (groen)
§ L-kegeltjes: 560 nm (rood)
⇒ kleurperceptie door relatieve activiteit S-, M-, L-kegeltjes
(wit = alle golflengtes, activeert de 3 soorten in gelijke mate)
Pathologieën:
- Kleuranomalieen (trichromatisme): fotopigmenten hebben een licht verschillende gevoeligheid
- Kleurenblindheid (dichromatisme): defect in gen voor rode of groene fotopigment (XGB)
- Geen kleurperceptie (monochromatisme)
1.5.2 Donker- en lichtadaptatie
Daglicht: cGMP in staafjes wordt zo laag dat het antwoord satureert → zicht hangt volledig af van kegeltjes
Donkeradaptatie (duur: 30 min): verhoogt gevoeligheid met factor 106 door:
- Dilatatie pupil
- Regeneratie van grote hoeveelheid niet-geactiveerd rhodopsine (staafjes)
- Aanpassing in het retinale netwerk: meer input van staafjes (scotopisch zicht), informatie van meer
staafjes beschikbaar voor elke ganglioncel
Lichtadaptatie:
- Constrictie pupil
The benefits of buying summaries with Stuvia:
Guaranteed quality through customer reviews
Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.
Quick and easy check-out
You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.
Focus on what matters
Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!
Frequently asked questions
What do I get when I buy this document?
You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.
Satisfaction guarantee: how does it work?
Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.
Who am I buying these notes from?
Stuvia is a marketplace, so you are not buying this document from us, but from seller mdmd12. Stuvia facilitates payment to the seller.
Will I be stuck with a subscription?
No, you only buy these notes for $23.45. You're not tied to anything after your purchase.