100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Samenvatting Statistiek 4: MDA (BA3 VUB) $7.56   Add to cart

Summary

Samenvatting Statistiek 4: MDA (BA3 VUB)

 25 views  1 purchase
  • Course
  • Institution

Dit is een volledige en uitgebreide samenvatting van het vak statistiek IV: multivariate data-analyse, gegeven in 3e bachelor Psychologie aan de VUB door Professor O. Mairesse. Het is een combinatie van de powerpoints en mijn eigen notities. Ik noteer altijd vrij letterlijk wat er gezegd wordt, zo ...

[Show more]

Preview 6 out of 188  pages

  • June 15, 2024
  • 188
  • 2023/2024
  • Summary
avatar-seller
LenaC
Academiejaar: ’23 –‘24

Samenvatting statistiek IV
Inhoud
1. Verkennen van data .........................................................................................................3
1.1 Eyeballing data ............................................................................................................5
1.1.1 Grafisch verkennen van data ........................................................................................5
1.1.2 Analyse missing data ...................................................................................................6
1.1.3 Outliers ..................................................................................................................... 10
1.1.4 Assumpties ............................................................................................................... 11
1.1.5 Data transformatie ..................................................................................................... 15
1.1.6 Dummy codering ....................................................................................................... 17
2. Regressie-analyse.......................................................................................................... 19
2.1 Logistische regressie.................................................................................................. 31
3. Variantie-analyse ........................................................................................................... 40
3.1 Meervoudige vergelijkingen ........................................................................................ 61
4. Variantie-analyse 2 ........................................................................................................ 66
4.1 Twee-factor ANOVA.................................................................................................... 66
4.2 Repeated Measures ................................................................................................... 83
4.3 Mixed design.............................................................................................................. 86
5. Factoranalyse ................................................................................................................ 91
5.1 Methode voor FA ........................................................................................................ 97
5.2 Hoeveel componenten/factoren? ............................................................................. 100
5.3 Factorstructuur interpreteren ................................................................................... 103
5.4 Functionele Data analyse - FPCA .............................................................................. 109
6. Clusteranalyse ............................................................................................................ 113
6.1 Kenmerken van het model ........................................................................................ 114
6.2 Similariteitsmaten ................................................................................................... 115
6.3 Cluster procedures .................................................................................................. 120
6.3.1 Hiërarchische clustering .......................................................................................... 120
6.3.2 Partitioneringsmethoden .......................................................................................... 128
7. Inleiding in mediatie en moderatie ................................................................................ 134
7.1 Introductie causaliteit .............................................................................................. 134
7.2 Soorten relaties ....................................................................................................... 136
7.3 Mediatieanalyse ...................................................................................................... 140
7.3.1 Baron en Kenny methode ......................................................................................... 141
7.3.2 Sobel test ................................................................................................................ 145

1

,LenaC
Academiejaar: ’23 –‘24
7.3.3 Bootstrapping .......................................................................................................... 145
7.4 Moderatie-analyse ................................................................................................... 151
8. Structural Equation Modeling (SEM).............................................................................. 156
8.1 Praktisch voorbeeld ................................................................................................. 156
8.2 Wat is SEM? ............................................................................................................. 157
8.3 Confirmatorische factor analyse .............................................................................. 158
8.4 Stuctural model ....................................................................................................... 168
8.5 Pad analyse ............................................................................................................. 172
8.6 SEM......................................................................................................................... 173
9. Netwerken ................................................................................................................... 174
9.1 Psychologische netwerkbenadering .......................................................................... 174
9.2 Netwerkstructuren ................................................................................................... 175
9.3 Voorwaardelijke afhankelijkheid ............................................................................... 179
9.4 Centraliteit .............................................................................................................. 180
9.5 Pairwise Markov Random Fields (PMRF) .................................................................... 184
9.6 Modelselectie .......................................................................................................... 185
9.7 Netwerkstabiliteit .................................................................................................... 186
9.8 Netwerken vergelijken .............................................................................................. 187




2

,LenaC
Academiejaar: ’23 –‘24

1. Verkennen van data
Waarom data-analyse

• Data-analyse = noodzakelijk voor psychologen
- Data-analyse in de media
- Begrip van + kritische instelling tegenover vakliteratuur
- Kunnen verzamelen/analyseren van data

Bv: Corona heeft ervoor gezorgd dat er veel verkeerde info de wereld in gestuurd werd.
Dit had uiteindelijk zelfs impact op de wereldgezondheid (antivaxers)

• Data-analyse helpt je om:
- 1. Data te organiseren (grafieken,…)
- 2. Data te beschrijven (beschrijvende/deductieve statistiek, samenvatten)
Niet gewoon naar te tabellen kijken, maar visueel maken, ook in een artikel
- 3. Interpreteren en uitspraken doen op basis van data (inferentiële/inductieve
statistiek, verklaren)
- 4. Theorieën te verifiëren en aan te passen

Inductieve statistiek




• We kunnen dan bv gaan testen of een steekproef gemiddelde significant verschilt van
een populatie gemiddelde

Begrippen:

• Theorie → Hypothese → Steekproef → Steekproefgrootheden
• Steekproefgrootheid (statistiek, stat. grootheid): maat gebaseerd op de gegevens van de
steekproef (vb.: rekenkundig gemiddelde, proportie,…)
• Steekproefgrootheid = toevalsvariabele met een bepaalde verdeling →
steekproevenverdeling

Kwalitatieve checks doen nadat je een theorie hebt gevonden, alle alternatieve opties
voor die uitkomst nagaan, of die ergens anders door komen


3

,LenaC
Academiejaar: ’23 –‘24

• Stel: random steekproef 1 en we berekenen S1, random steekproef 2 (zelfde n) en we
berekenen S2, etc. tot Sn
- De verdeling van deze steekproefgrootheden = steekproevenverdeling
• SteekproeFverdeling (sample distribution)
- Frequentieverdeling van de uitkomsten van de
steekproef
- Empirisch, gekend
• SteekproeVENverdeling (sampling distribution)
- Kansverdeling van alle mogelijke waarden die een
steekproefgrootheid (voor alle mogelijke verschillende
steekproeven) kan aannemen
- Theoretisch, benaderen
• Stel: steekproefgrootheid = 𝑥̅
• Wanneer men herhaaldelijk toevallige steekproeven met grootte n trekt uit een normaal
verdeelde populatie met gemiddelde = µ en standaardafwijking = σ dan is de
steekproeven-verdeling van het steekproefgemiddelde normaal verdeeld




• Centrale limietstelling: Wanneer men herhaaldelijk toevallige steekproeven met grootte
n trekt uit een willekeurig verdeelde populatie met gemiddelde =  en standaardafwijking
=  en indien n voldoende groot (vuistregel: n 30) is, dan benadert de
steekproevenverdeling van het steekproefgemiddelde een normaalverdeling:




• Notaties:




4

,LenaC
Academiejaar: ’23 –‘24

1.1 Eyeballing data

1.1.1 Grafisch verkennen van data
• Onderzoek van verdelingen
- Histogram
- Stam-blad diagram
- Box Plot
• Zorgt voor een globaal zicht, geleerd in stat 1
• Boxplot: info over positie, spreiding, symmetrie




• Histogram: info over normaliteit van verdeling




• Stem en leaf: werkelijke waarden waarnemingen




5

, LenaC
Academiejaar: ’23 –‘24




Zo kan je bv zien bij een bivariate relatie tussen variabelen kan je het gemakkelijkste een
scatterplot gebruiken


1.1.2 Analyse missing data
Ontbrekende waarden voor 1 of meer variabelen

• Oorzaak?
- Onafhankelijk van respondent
o Procedure (bv: iemand “nee” ga naar vraag xxx” = branching)
Branching zorgt ook voor missing data, want een groot deel gaat blanco zijn
o Codeerfouten
Bv: mensen een online vragenlijst laten invullen
- Afhankelijk van de respondent
o Omvang? (veel of weinig)
Bv: af en toe iets missen of super veel mensen die iets niet hebben ingevuld
o Analyse van het profiel van missing data (is er systematiek of random?)

Missing data ga je sowieso krijgen bv: data kwijt zijn, hele grote uitschieters, zo krijg je gaatjes in
je dataset




6

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller LenaCoe. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $7.56. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

84669 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 14 years now

Start selling
$7.56  1x  sold
  • (0)
  Add to cart