Table of contents
Lecture 1: The chain rule ......................................................................................................................... 7
Differentials ......................................................................................................................................... 7
The differential of a function............................................................................................................... 7
Application........................................................................................................................................... 7
The chain rule ...................................................................................................................................... 7
The chain rule (general version) .......................................................................................................... 9
Implicit differentiation ........................................................................................................................ 9
Lecture 2: Directional derivates ............................................................................................................ 12
Directional derivatives....................................................................................................................... 12
The gradient vector ........................................................................................................................... 12
Function of three variables ............................................................................................................... 12
Maximizing the directional derivative ............................................................................................... 13
Tangent planes to level surfaces ....................................................................................................... 13
Lecture 3: Local maximum and minimum values .................................................................................. 14
Local maximum and minimum values ............................................................................................... 14
Critical points ..................................................................................................................................... 14
The second derivates test ................................................................................................................. 15
Examples........................................................................................................................................ 15
Lecture 4: Absolute maximum and minimum values ............................................................................ 17
Closed and bounded sets .................................................................................................................. 17
The extreme value theorem .............................................................................................................. 17
Absolute maximum and minimum values ......................................................................................... 17
Lecture 5: Double integrals over rectangles.......................................................................................... 21
Riemann sums ................................................................................................................................... 21
The midpoint rule .......................................................................................................................... 21
Iterated integrals ............................................................................................................................... 22
Double integrals over rectangles....................................................................................................... 22
Average value ................................................................................................................................ 23
Lecture 6: Double integrals over general regions ................................................................................. 24
Double integrals over general regions .............................................................................................. 24
Regions of type I ................................................................................................................................ 24
Regions of type II ............................................................................................................................... 24
More general regions ........................................................................................................................ 25
Double integrals over general regions .............................................................................................. 27
, Area of a region ................................................................................................................................. 30
Example ......................................................................................................................................... 30
Lecture 7: Double integrals in polar coordinates .................................................................................. 31
Polar coordinates .............................................................................................................................. 31
Double integrals in polar coordinates ............................................................................................... 31
Example 1 ...................................................................................................................................... 32
Example 2 ...................................................................................................................................... 33
Lecture 8: Applications of double integrals........................................................................................... 36
Density and mass............................................................................................................................... 36
Center of mass................................................................................................................................... 36
Density and mass............................................................................................................................... 36
Moments ........................................................................................................................................... 37
Center of mass................................................................................................................................... 37
Example 1 ...................................................................................................................................... 37
Example 2 ...................................................................................................................................... 39
Moment of inertia ............................................................................................................................. 39
Lecture 9: Triple integrals ...................................................................................................................... 40
Triple integrals ................................................................................................................................... 40
Triple integrals over rectangular boxes ............................................................................................. 40
Fubini’s theorem for triple integrals ................................................................................................. 41
Example 1 ...................................................................................................................................... 41
Triple integrals over general regions ................................................................................................. 41
Triple integrals over a region of type 1 ............................................................................................. 42
Triple integrals over a region of type 2 ............................................................................................. 42
Triple integrals over a region of type 3 ............................................................................................. 42
Example 2 ...................................................................................................................................... 42
Triple integrals ................................................................................................................................... 43
Example 3 ...................................................................................................................................... 43
Applications of triple integrals .......................................................................................................... 44
Center of mass................................................................................................................................... 44
Example ......................................................................................................................................... 44
Moment of inertia ............................................................................................................................. 45
Example ......................................................................................................................................... 45
Lecture 10: Triple integrals in cylindrical coordinates .......................................................................... 46
Cylindrical coordinates ...................................................................................................................... 46
Volume element in cylindrical coordinates ....................................................................................... 46
, Triple integrals in cylindrical coordinates.......................................................................................... 46
Example ......................................................................................................................................... 47
Applied project: Roller derby ............................................................................................................ 48
Lecture 11: Triple integrals in spherical coordinates ............................................................................ 49
Spherical coordinates ........................................................................................................................ 49
Volume element in spherical coordinates......................................................................................... 49
Triple integrals in spherical coordinates ........................................................................................... 49
Example ......................................................................................................................................... 50
Applied project: Roller derby ............................................................................................................ 52
Lecture 12: Change of variables in multiple integrals ........................................................................... 53
Change of variables ........................................................................................................................... 53
One-to-one transformations ............................................................................................................. 53
Example ......................................................................................................................................... 54
The Jacobian of a transformation...................................................................................................... 55
Change of variables in a double integrals ......................................................................................... 55
Example ......................................................................................................................................... 56
Polar coordinates .............................................................................................................................. 56
Triple integrals ................................................................................................................................... 57
Cylindrical coordinates ...................................................................................................................... 57
Spherical coordinates ........................................................................................................................ 58
Lecture 13: Vector fields ....................................................................................................................... 59
Example ......................................................................................................................................... 59
More examples .................................................................................................................................. 60
Examples............................................................................................................................................ 60
Gradient (vector) fields ..................................................................................................................... 60
Example ......................................................................................................................................... 61
Conservative vector fields ................................................................................................................. 61
Lecture 14: Line integrals and the arc length of a curve ....................................................................... 63
Parametrization of a curve ................................................................................................................ 63
Example ......................................................................................................................................... 64
The arc length of a curve ................................................................................................................... 64
Examples........................................................................................................................................ 64
The arc length function ..................................................................................................................... 64
The line integral of a scalar function ................................................................................................. 65
Example ......................................................................................................................................... 65
Application: physical interpretation .................................................................................................. 65
, Example ......................................................................................................................................... 66
The line integral of a vector field ...................................................................................................... 67
Example ......................................................................................................................................... 67
Notation............................................................................................................................................. 68
Lecture 15: The fundamental theorem for line integrals ...................................................................... 69
Line integrals ..................................................................................................................................... 69
The fundamental theorem for line integrals ..................................................................................... 70
Independence of path ....................................................................................................................... 70
Closed path ........................................................................................................................................ 70
Open and connected regions in ℝ2 .................................................................................................. 70
Conservative vector fields ................................................................................................................. 71
Simple curves..................................................................................................................................... 71
Simply-connected regions ................................................................................................................. 71
Conservative vector fields ................................................................................................................. 71
Lecture 16: Green’s theorem ................................................................................................................ 72
Example ......................................................................................................................................... 72
The orientation of a plane curve ....................................................................................................... 72
Green’s theorem ............................................................................................................................... 73
Example ......................................................................................................................................... 73
Application: calculating areas............................................................................................................ 74
Example ......................................................................................................................................... 74
Extended proof of Green’s theorem ................................................................................................. 75
Example ......................................................................................................................................... 75
Example ......................................................................................................................................... 76
Lecture 17: Curl and divergence............................................................................................................ 77
The curl of a vector field.................................................................................................................... 77
The vector differential operator ∇ .................................................................................................... 77
Example ......................................................................................................................................... 77
The curl of a conservative vector field .............................................................................................. 78
Example ......................................................................................................................................... 78
Example ......................................................................................................................................... 78
The divergence of a vector field ........................................................................................................ 79
Example ......................................................................................................................................... 80
Example ......................................................................................................................................... 80
The Laplace operator......................................................................................................................... 80
Vector forms of Green’s theorem ..................................................................................................... 81
The benefits of buying summaries with Stuvia:
Guaranteed quality through customer reviews
Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.
Quick and easy check-out
You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.
Focus on what matters
Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!
Frequently asked questions
What do I get when I buy this document?
You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.
Satisfaction guarantee: how does it work?
Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.
Who am I buying these notes from?
Stuvia is a marketplace, so you are not buying this document from us, but from seller woodytess. Stuvia facilitates payment to the seller.
Will I be stuck with a subscription?
No, you only buy these notes for $6.92. You're not tied to anything after your purchase.