100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Summary of the paper Supervised learning based on temporal coding in spiking neural networks $8.02   Add to cart

Summary

Summary of the paper Supervised learning based on temporal coding in spiking neural networks

 4 views  0 purchase
  • Course
  • Institution

This is a summary of the paper Supervised learning based on temporal coding in spiking neural networks for the course Seminar of Computer Vision by Deep Learning in TU Delft

Preview 2 out of 6  pages

  • July 5, 2024
  • 6
  • 2023/2024
  • Summary
avatar-seller
Supervised learning based on
temporal coding in spiking
neural networks
Introduction
ANNs, however, are fundamentally different from spiking networks. Unlike ANN
neurons that are analog-valued, spiking neurons communicate using all-or-
nothing discrete spikes. A spike triggers a trace of synaptic current in the target
neuron


While backpropagation is a well-developed general technique for training
feedforward ANNs, there is no general technique for training feedforward
spiking neural networks.
In a stochastic formulation, the goal is to maximize the likelihood of an entire
output spike pattern. The stochastic formulation is needed to ’smear out’ the
discrete nature of the spike, and to work instead with spike generation
probabilities that depend smoothly on network parameters and are thus more
suitable for gradient descent learning.
In this paper, we develop a direct training approach that does not try to reduce
spiking networks to conventional ANNs. Instead, we relate the time of any spike
differentiably to the times of all spikes that had a causal influence on its
generation. We can then impose any differentiable cost function on the spike
times of the network and minimize this cost function directly through gradient
descent.


Network Model
Membrane Dynamics: The membrane potential (V) of neuron j is described by
a differential equation where the right hand side is the synaptic current (which
is determined by the weights).
Synaptic current thus jumps instantaneously on the arrival of an input spike,
then decays exponentially with time constant τsyn




Supervised learning based on temporal coding in spiking neural networks 1

, Spiking Behaviour: A neuron spikes when its membranes potential crosses a
firing threshold (set to 1 in this case). After spiking, the membrane potential is
reset to 0. The model allows the membrane potential to go below zero if the
integral of the synaptic current is negative.


Initial Equation:

Membrane Potential for a neuron
recieving N spikes at several times
with weights


This is because set prediction is given a predefined number of objects
(some can be empty)

The model learns to predict the locations and sizes of the objects without
relying on a pre-placed grid

Thanks to the one-to-one matching with bipartite matching there will be no
overlapping bboxes and thus no need for NMS :)



In a feedforward spiking network that uses a temporal coding scheme where
information is encoded in spike times instead of spike rates, the network input-
output relation is differentiable almost everywhere.

The neuron spikes when its
membrane potential reaches the
firing threshold (to 1)=




Exponents to simplify the calculations. The sum of the weights needs to be
greater than 1 which ensures that z_out = exp(t_out) is always positive




Supervised learning based on temporal coding in spiking neural networks 2

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller guillemribes. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $8.02. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

84251 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 14 years now

Start selling
$8.02
  • (0)
  Add to cart