100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada
logo-home
IIT JEE pyq with solutions $7.99
Añadir al carrito

Examen

IIT JEE pyq with solutions

 0 veces vendidas
  • Grado
  • Institución

Hello students !I will provide you pyq along with solutions of JEE main+advanced and school notes of 11th and alert and focused!

Vista previa 2 fuera de 14  páginas

  • 13 de julio de 2024
  • 14
  • 2023/2024
  • Examen
  • Preguntas y respuestas
avatar-seller
VECTOR ALGEBRA


VECTOR ALGEBRA
  
1. Let aˆ, bˆ be unit vectors. If c be a vector such that the 6. Let a  iˆ  ˆj  kˆ and c  2iˆ  3iˆ  2k . Then the
   
    number of vectors b such that b  c  a and
angle between â and c is , and bˆ  c  2  c  aˆ  , 
12
b  1, 2,........,10 is :
2
then 6c is equal to
(a) 0 (b) 1
(a) 6 3  3  (b) 3  3 (c) 2
 
(d) 3
7. Let a and b be the vectors along the diagonal of a
(c) 6 3  3  (d) 6  3 1  parallelogram having area 2 2. let the angle between
2. Let â and b̂ be two unit vectors such that       
a and b be acute. a  1 and a  b  a  b . If
  
aˆ  bˆ  2 aˆ  bˆ  2.  If    0,   is the angle    

 
c  2 2 a  b  2b , then the angle between b and c

between â and bˆ, then among the statements :
is :
 S1 : 2 aˆ  bˆ  aˆ  bˆ  
(a) (b) 
4 4
 S 2  : The projection of 
â on â  bˆ is 1
2 (c)
5
(d)
3
(a) Only (S1) is true 6 4
 
(b) Only (S2) is true 8. Let a   iˆ  2 ˆj  kˆ and b  2iˆ   ˆj  kˆ, where
(c) Both (S1) and (S2) are true   R. If the area of the parallelogram whose adjacent
(d) Both (S1) and (S2) are false  
 sides are represented by the vectors a and b is
3. Let a  a1iˆ  a2 ˆj  a3 kˆ ai  0, i  1, 2,3 be a vector 2   2
which makes equal angles with the coordinates axes
15  2  4  , then the value of 2 a  a  b b is  

OX , OY and OZ . Also, let the projection of a on the equal to
 (a) 10 (b) 7
vector 3iˆ  4 ˆj be 7. Let b be a vector obtained by
   (c) 9 (d) 14
rotating a with 90 . If a , b and x-axis are coplanar, 9.

Let a be a vector which is perpendicular to the vector

then projection of a vector b on 3iˆ  4 ˆj is equal to
3iˆ 

2

 
j  2kˆ. If a  2iˆ  kˆ  2iˆ  13 ˆj  4kˆ, then the
(a) 7 (b) 2

(c) 2 (d) 7 projection of the vector a on the vector 2iˆ  2 ˆj  kˆ is
      
4. If a  b  1, b  1, b  c  2 and c  a  3, then the value 1
(a) (b) 1
         3
  
of  a  b  c , b   c  a  , c  b  a  is :
   5 7
   (c) (d)
(a) 0 (b) 6a  b  c   3
 
3
      10. Let a   iˆ  3 ˆj  kˆ, b  3iˆ   ˆj  4k and
(c) 12c  a  b   (d) 12b  c  a 
 ˆ
   c  i  2 ˆj  2k ,  , R , be three vectors. If the
5. Let a  iˆ  ˆj  2kˆ, b  2iˆ  3 ˆj  kˆ are c  iˆ  ˆj  k be
    10
three given vectors. Let v be a vector in the plane of a projection of a on c is and
3
  2   
and b whose projection on c is . If v  ˆj  7, then b  c  6iˆ  10 ˆj  7 kˆ, then the value of    equal
3
to :
 ˆ ˆ
 
v  i  k is equal to (a) 3 (b) 4
(a) 6 (b) 7 (c) 5 (d) 6
(c) 8 (d) 9 11. Let A, B, C be three points whose position vectors
respectively are :

, VECTOR ALGEBRA


a  iˆ  4 ˆj  3kˆ 4 5
 (c) (d)
5 6
b  2iˆ   ˆj  4kˆ,   R 

 16. Let a   iˆ  ˆj   kˆand b  3i  5 ˆj  4kˆ be two
ˆ
c  3iˆ  2 ˆj  5kˆ
 
   vectors, such that a  b  iˆ  9iˆ  12kˆ. Then the
If  is the smallest positive integer for which a, b , c    
projection of b  2a on b  a is equal to
ar e non-collinear, then the length of the median, in
ABC , through A is : 39
(a) 2 (b)
5
82 62
(a) (b) 46
2 2 (c) 9 (d)
5
69 66  
(c) (d) 17. Let a  2iˆ  ˆj  5kˆ and b   iˆ   ˆj  2kˆ. If
2 2
  23 
12. Let ABC be
      
a triangle

such that
 
a  b  iˆ  kˆ  , then b  2 ˆj is equal to
2
BC  a , CA  b , AB  c , a  6 2, b  6 3, and
(a) 4 (b) 5
 
b  c  12 consider the statements : (c) 21 (d) 17
    
   
 
 S1 : a  b  c  b  c  6 2 2  1  
18. Let vector a has a magnitude 9. Let a vector b be
such that for every  x, y   R  R   0, 0  , the vector
 2
 S 2  : ABC  cos   . Then
1
 
 3  
  
xa  yb is perpendicular to the vector 6 ya  18 xb . 
(a) Both (S1) and (S2) are true  
Then the value of a  b is equal to :
(b) Only (S1) is true
(c) Only (S2) is true (a) 9 3 (b) 27 3
(d) Both (S1) and (S2) are false (c) 9 (d) 81
 
13. Let a  iˆ  ˆj  2kˆ and b be a vector such that 19. Let S be the set of all a  R for which the angle
     
between the vectors u  a  log e b  iˆ  6 j  3kˆ and
a  b  2iˆ  kˆ and a  b  3. Then the projection of b
  
on the vector a  b is :- v   log e b  iˆ  2 j  2a  log e b  kˆ,  b  1 is acute.
2 3 Then S is equal to:
(a) (b) 2
21 7  4
(a)  – ,   (b) 
2 7 2  3
(c) (d)
3 3 3  4   12 
 (c)   , 0  (d)  ,  

14. Let a   iˆ  ˆj  k and b  2iˆ  ˆj   kˆ, and   0. If
ˆ  3   7 
  
 
the projection of a  b on the vector i  2 ˆj  2kˆ is 20. Let a  3iˆ  ˆj and b  iˆ  2 ˆj  kˆ. Let c be a vector
     
30, then  is equal to  
satisfying a  b  c  b   c. If b c are non-parallel,
15 then the value of  is:
(a) (b) 8
2 (a) 5 (b) 5
13 (c) 1 (d) –1
(c) (d) 7
2 21. Let â and b̂ be two unit vectors such that the angle

15. A vector a is parallel to the line of intersection of the 
between them is . If  is the angle between the
plane determined by the vectors iˆ, iˆ  ˆj and the plane 4
determined by the vectors iˆ  ˆj , iˆ  kˆ. The obtuse
 
vectors  â  bˆ    
and aˆ  2bˆ  22 aˆ  bˆ , then the
angle between a and the vector b  iˆ  2 ˆj  2kˆ is value of 164 cos 2  is equal to :
3 2 (a) 90  27 2 (b) 45  18 2
(a) (b)
4 3
(c) 90  3 2 (d) 54  90 2

Los beneficios de comprar resúmenes en Stuvia estan en línea:

Garantiza la calidad de los comentarios

Garantiza la calidad de los comentarios

Compradores de Stuvia evaluaron más de 700.000 resúmenes. Así estas seguro que compras los mejores documentos!

Compra fácil y rápido

Compra fácil y rápido

Puedes pagar rápidamente y en una vez con iDeal, tarjeta de crédito o con tu crédito de Stuvia. Sin tener que hacerte miembro.

Enfócate en lo más importante

Enfócate en lo más importante

Tus compañeros escriben los resúmenes. Por eso tienes la seguridad que tienes un resumen actual y confiable. Así llegas a la conclusión rapidamente!

Preguntas frecuentes

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

100% de satisfacción garantizada: ¿Cómo funciona?

Nuestra garantía de satisfacción le asegura que siempre encontrará un documento de estudio a tu medida. Tu rellenas un formulario y nuestro equipo de atención al cliente se encarga del resto.

Who am I buying this summary from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller [deepyadav]1. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy this summary for $7.99. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

45,681 summaries were sold in the last 30 days

Founded in 2010, the go-to place to buy summaries for 15 years now

Empieza a vender

Vistos recientemente


$7.99
  • (0)
Añadir al carrito
Añadido