100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
fisica - analisis vectorial $2.99   Add to cart

Class notes

fisica - analisis vectorial

 5 views  0 purchase
  • Course
  • Institution

apuntes del curso de física universitaria del tema de análisis vectorial en dos dimensiones, teoría de forma práctica y resumida con ejercicios resueltos y propuestos.

Preview 1 out of 4  pages

  • July 15, 2024
  • 4
  • 2023/2024
  • Class notes
  • Emerson gutierrez palomino
  • All classes
avatar-seller
VECTOR Casos Particulares:
Es un ente matemático que gráficamente se representa A. Si 𝛼 = 0° ( ⃗A ∥ ⃗⃗B )
por un segmento de recta orientado. ⇨ Se obtiene el máximo valor de la resultante.
• La física utiliza los vectores para representar las
magnitudes vectoriales.


𝑅 = 𝐴 + 𝐵 = 𝑅𝑚𝑎𝑥

⃗ ⇵B
B. Si 𝛼 = 180° ( A ⃗⃗ )
⇨ Se obtiene el menor valor posible de la resultante.
• En general un vector se representa de la siguiente
forma:
𝑅 = 𝐴 − 𝐵 = 𝑅𝑚𝑖𝑛
⃗ = Aμ
A ⃗
A: modulo del vector ⃗A observación:
⃗μ : vector unitario de ⃗A 𝑅𝑚𝑖𝑛 ≤ 𝑅 ≤ 𝑅𝑚𝑎𝑥
Si: ⃗μ = (𝑐𝑜𝑠𝛼; 𝑠𝑒𝑛𝛼) ⃗ forma un cierto ángulo con B
Si A ⃗⃗ ; entonces:
⇨ ⃗A = (𝑐𝑜𝑠𝛼; 𝑠𝑒𝑛𝛼) 𝑅𝑚𝑖𝑛 < 𝑅 < 𝑅𝑚𝑎𝑥
Donde: 𝛼 𝑒𝑠 𝑙𝑎 𝑑𝑖𝑟𝑒𝑐𝑐𝑖𝑜𝑛 𝑑𝑒𝑙 𝑣𝑒𝑐𝑡𝑜𝑟 ⃗A
C. Si 𝛼 = 90° ( ⃗A ⊥ ⃗⃗B )
OPERACIONES VECTORIALES ⇨ Se obtiene aplicando el teorema de Pitágoras.
1. Suma de vectores o composición vectorial.
Es una operación que tiene por finalidad hallar un único 𝑅 = √𝐴2 + 𝐵2
vector denominado vector resultante (R ⃗ ), el cual es
igual a la suma de todos los vectores.
Ejemplo:
• Sean A ⃗ 𝑦B ⃗⃗ 𝑣𝑒𝑐𝑡𝑜𝑟𝑒𝑠 ⇨ R ⃗ =A ⃗ + B⃗⃗ Propiedad:
⃗ ,B ⃗⃗⃗ 𝑣𝑒𝑐𝑡𝑜𝑟𝑒𝑠 ⇨ R
⃗⃗ 𝑦 C ⃗ =A ⃗ + B⃗⃗ + C ⃗⃗ ⃗ 𝑦B
Cuando los dos vectores A ⃗⃗ son iguales en el
• Sean A
2. Resta de vectores. Es una operación que tiene por módulo.
finalidad hallar un vector denominado vector diferencia
(D⃗ ), el cual es igual a la resta de vectores.
Ejemplo: 𝑅 = √2
• Sean ⃗A 𝑦 ⃗⃗B 𝑣𝑒𝑐𝑡𝑜𝑟𝑒𝑠 ⇨ ⃗D = ⃗A − ⃗⃗B
D. Si: α = 60°
METODOS PARA CALCULAR LA RESULTANTE
I. MÉTODO DEL PARALELOGRAMO
Se utiliza para calcular la resultante de dos vectores 𝑅 = 𝑥√3
concurrentes y coplanarios que tienen un mismo punto
de origen.
Gráficamente se construye un paralelogramo trazando
paralelas a los vectores. El vector resultante se traza E. Si: α = 120°
uniendo el origen de los vectores con la intercepción de 𝑅=𝑥
las paralelas.



Observación:
• Si: α = 120°

⃗ =A
Vector Resultante: R ⃗ + ⃗⃗B
𝑅=0

Módulo de R
𝑅 = √𝐴2 + 𝐵2 + 2𝐴𝐵𝑐𝑜𝑠𝛼

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller emersongutierrez. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $2.99. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

67096 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 14 years now

Start selling
$2.99
  • (0)
  Add to cart