Kennisbasis Rekenen
Hoofdstuk 1: hele getallen
Talstelsels: een systeem om hoeveelheden mee te beschrijven, dit systeem
wordt door iedereen begrepen en gehanteerd.
Additief talstelsel: aan de hand van simpele symbolen hoeveelheden weergeven
(abacus).
Decimaal positiestelsel: de waarde van een cijfer wordt niet alleen bepaald door
het cijfer maar ook door de plaats van het cijfer.
Getallen in beeld brengen:
1. Model
2. Context
Model: schematische weergave van de achterliggende bedoeling van een som.
Context: situatie ondersteunend model.
Getallen
Optellen
term + term = som
Aftrekken
aftrekgetal – aftrekker = verschil
Vier verschillende betekenissen van aftrekken
1. Splitsen;
2. Vermindering;
3. Vergelijking;
4. Het omgekeerde (inverse) van optellen.
Vermenigvuldigen
factor x factor = product
Betekenis vermenigvuldiging:
1. Herhaald optellen;
2. Vermenigvuldigen met een factor.
Delen
deeltal : deler = quotiënt
interpretaties delen:
1. Eerlijk verdelen en uitdelen;
2. Het omgekeerde van vermenigvuldigen;
3. Verhouding (ratio)
Eigenschappen van de bewerkingen
- Commutatieve of wisseleigenschap: 3+4=4+3; 3x4=4x3
- Distributieve of verdeeleigenschap: 8x(5+7) =(8x5)+(8x7)
- Associatieve of schakeleigenschap: (3+4)+5=3+(4+5);
(3x4)x4=3x(4x4)
- Inverse eigenschap: 24:3=8 dus 8x3=24
28+4=32 dus 32-28=4
- Compenseren of termen veranderen: 124+189=113+200
2876-387=2889-400
- Groter/kleiner maken van vermenigvuldiging: 45x75=12x300
, - Groter/kleiner maken bij delen: 336:12=112:4
Kenmerken deelbaarheid
getal als …. bewijs
deelbaar
door
2 Getal eindigt op 0, 2, 4, 6 of 8 Alle tienvouden zijn deelbaar
door 2, dus alleen naar het
einde kijken.
3 Som van de cijfers van het getal Fout:
zijn deelbaar door 3. 34.567 > 3+4+5+6+7 = 25:3 =
kan niet
Goed:
36.567 > 3+6+4+6+7 = 27:3=
9
Kan wel
4 Getal gevormd door de laatste 2356 > 56:4 = 14
twee cijfers deelbaar is door 4. Alle honderdvouden zijn
deelbaar door 4, daarom alleen
naar de laatste 2 getallen kijken.
5 Getal eindigt op 0 of 5 Alle tienvouden zijn deelbaar
door 5, alle getallen deelbaar
door 0.
6 Deelbaar door 2 én 3, want dan 1368 > 1+3+6+8=18
ook door 6. 18: 3 =6 18: 2 =9
7 Getal, wordt gevonden door het 7.364 > 36-2x4= 28 : 7 = 4
laatste cijfer weg te laten en
tweemaal af te trekken van het
(overgebleven)getal, deelbaar
door 7.
8 Getal, gevormd door de laatste 3 Alle duizendvouden zijn
cijfers is deelbaar door 8. deelbaar door 8.
9 Som van de cijfers is deelbaar 64.377 > 6+4+3+7+7=27:9 =
door 9. 3
10 Eindigt op 0. Alle tienvouden zijn deelbaar
door 10.
Volgorde bewerkingen
1. Bewerkingen tussen haakjes;
2. Machtsverheffen en worteltrekken;
3. Vermenigvuldigingen en delen
4. Optellen en aftrekken
,Cijferen en schatten
Cijferen
Algoritmen: iets volgens een vast ritme doen > cijferen
Optellen
Kolomsgewijs rekenen: gebaseerd op het splitsen van getallen in bijvoorbeeld
honderdtallen, tientallen, eenheden etc. deze respectievelijk bij elkaar tellen en
het geheel samenvoegen tot één uitkomst. (distributieve eigenschap)
De opgave: 345+567
Kolomsgewijs rekenen Standaardalgoritme
A B C 11
345 = 300 + 40 + 5 345 345 345
567 = 500 + 60 + 7 567+ 567 + 567+
800 + 100 + 12 = 912 800 12
912
100 100
12 + 800+
912 912
Bij aftrekken wordt het standaardalgoritme gebruikt.
Vermenigvuldigen: rechthoekmodel is het meest gebruikt. Hierin worden een
aantal eigenschappen herkent.
1. Vermenigvuldigen is herhaald optellen;
2. Commutatieve eigenschap;
3. Distributieve eigenschap;
4. Associatieve eigenschap;
5. Groter/kleiner maken bij vermenigvuldiging.
Kolomsgewijs algoritme
35 35
27 x 27 x
35 245
210 700 +
100 945
600 +
945
Delen
Kolomsgewijs algoritme
, Schatten
Op een beredeneerde manier, zonder algoritme, tot een schatting te komen die
bij de precieze uitkomst in de buurt komt.
2345 + 2456 + 3400
1. Duizendtallen optellen
2. Honderdtallen optellen
3. Schatten
Rekenmachine
Vier aspecten bij didactisch gebruik van de rekenmachine. De rekenmachine
1. Als vlotte rekenaar;
2. Als controlemiddel van bepaalde rekenprocedure;
3. Als middel tot ontdekking van rekenwiskundige relaties;
4. Als spelletjesbron.
Driehoeksgetallen en vierkantsgetallen
Driehoeksgetallen: wordt gezocht naar regelmaat die leidt tot een formule. Leidt
tot inzicht in getallen en getalstructuren. De eerste driehoeksgetallen zijn: 1, 3, 6,
10, 15 en 21. Er ontstaat een structuur:
1 3 6 10 15 21 28 36
+2 +3 +4 +5 +6 +7 +8 …..
Vierkantsgetallen: een verzameling van kwadraten
1 2 3 4 5 6
1 4 9 16 25 36
1² 2² 3² 4² 5² 6²
driehoeksgetallen
vierkantsgetallen
Kwadraten hun wortels
1 4 9 16 25 36
√1 √4 √9 √16 √25 √36
1 2 3 4 5 6
Rekenregels machten en wortels
Hoofdstuk 1: hele getallen
Talstelsels: een systeem om hoeveelheden mee te beschrijven, dit systeem
wordt door iedereen begrepen en gehanteerd.
Additief talstelsel: aan de hand van simpele symbolen hoeveelheden weergeven
(abacus).
Decimaal positiestelsel: de waarde van een cijfer wordt niet alleen bepaald door
het cijfer maar ook door de plaats van het cijfer.
Getallen in beeld brengen:
1. Model
2. Context
Model: schematische weergave van de achterliggende bedoeling van een som.
Context: situatie ondersteunend model.
Getallen
Optellen
term + term = som
Aftrekken
aftrekgetal – aftrekker = verschil
Vier verschillende betekenissen van aftrekken
1. Splitsen;
2. Vermindering;
3. Vergelijking;
4. Het omgekeerde (inverse) van optellen.
Vermenigvuldigen
factor x factor = product
Betekenis vermenigvuldiging:
1. Herhaald optellen;
2. Vermenigvuldigen met een factor.
Delen
deeltal : deler = quotiënt
interpretaties delen:
1. Eerlijk verdelen en uitdelen;
2. Het omgekeerde van vermenigvuldigen;
3. Verhouding (ratio)
Eigenschappen van de bewerkingen
- Commutatieve of wisseleigenschap: 3+4=4+3; 3x4=4x3
- Distributieve of verdeeleigenschap: 8x(5+7) =(8x5)+(8x7)
- Associatieve of schakeleigenschap: (3+4)+5=3+(4+5);
(3x4)x4=3x(4x4)
- Inverse eigenschap: 24:3=8 dus 8x3=24
28+4=32 dus 32-28=4
- Compenseren of termen veranderen: 124+189=113+200
2876-387=2889-400
- Groter/kleiner maken van vermenigvuldiging: 45x75=12x300
, - Groter/kleiner maken bij delen: 336:12=112:4
Kenmerken deelbaarheid
getal als …. bewijs
deelbaar
door
2 Getal eindigt op 0, 2, 4, 6 of 8 Alle tienvouden zijn deelbaar
door 2, dus alleen naar het
einde kijken.
3 Som van de cijfers van het getal Fout:
zijn deelbaar door 3. 34.567 > 3+4+5+6+7 = 25:3 =
kan niet
Goed:
36.567 > 3+6+4+6+7 = 27:3=
9
Kan wel
4 Getal gevormd door de laatste 2356 > 56:4 = 14
twee cijfers deelbaar is door 4. Alle honderdvouden zijn
deelbaar door 4, daarom alleen
naar de laatste 2 getallen kijken.
5 Getal eindigt op 0 of 5 Alle tienvouden zijn deelbaar
door 5, alle getallen deelbaar
door 0.
6 Deelbaar door 2 én 3, want dan 1368 > 1+3+6+8=18
ook door 6. 18: 3 =6 18: 2 =9
7 Getal, wordt gevonden door het 7.364 > 36-2x4= 28 : 7 = 4
laatste cijfer weg te laten en
tweemaal af te trekken van het
(overgebleven)getal, deelbaar
door 7.
8 Getal, gevormd door de laatste 3 Alle duizendvouden zijn
cijfers is deelbaar door 8. deelbaar door 8.
9 Som van de cijfers is deelbaar 64.377 > 6+4+3+7+7=27:9 =
door 9. 3
10 Eindigt op 0. Alle tienvouden zijn deelbaar
door 10.
Volgorde bewerkingen
1. Bewerkingen tussen haakjes;
2. Machtsverheffen en worteltrekken;
3. Vermenigvuldigingen en delen
4. Optellen en aftrekken
,Cijferen en schatten
Cijferen
Algoritmen: iets volgens een vast ritme doen > cijferen
Optellen
Kolomsgewijs rekenen: gebaseerd op het splitsen van getallen in bijvoorbeeld
honderdtallen, tientallen, eenheden etc. deze respectievelijk bij elkaar tellen en
het geheel samenvoegen tot één uitkomst. (distributieve eigenschap)
De opgave: 345+567
Kolomsgewijs rekenen Standaardalgoritme
A B C 11
345 = 300 + 40 + 5 345 345 345
567 = 500 + 60 + 7 567+ 567 + 567+
800 + 100 + 12 = 912 800 12
912
100 100
12 + 800+
912 912
Bij aftrekken wordt het standaardalgoritme gebruikt.
Vermenigvuldigen: rechthoekmodel is het meest gebruikt. Hierin worden een
aantal eigenschappen herkent.
1. Vermenigvuldigen is herhaald optellen;
2. Commutatieve eigenschap;
3. Distributieve eigenschap;
4. Associatieve eigenschap;
5. Groter/kleiner maken bij vermenigvuldiging.
Kolomsgewijs algoritme
35 35
27 x 27 x
35 245
210 700 +
100 945
600 +
945
Delen
Kolomsgewijs algoritme
, Schatten
Op een beredeneerde manier, zonder algoritme, tot een schatting te komen die
bij de precieze uitkomst in de buurt komt.
2345 + 2456 + 3400
1. Duizendtallen optellen
2. Honderdtallen optellen
3. Schatten
Rekenmachine
Vier aspecten bij didactisch gebruik van de rekenmachine. De rekenmachine
1. Als vlotte rekenaar;
2. Als controlemiddel van bepaalde rekenprocedure;
3. Als middel tot ontdekking van rekenwiskundige relaties;
4. Als spelletjesbron.
Driehoeksgetallen en vierkantsgetallen
Driehoeksgetallen: wordt gezocht naar regelmaat die leidt tot een formule. Leidt
tot inzicht in getallen en getalstructuren. De eerste driehoeksgetallen zijn: 1, 3, 6,
10, 15 en 21. Er ontstaat een structuur:
1 3 6 10 15 21 28 36
+2 +3 +4 +5 +6 +7 +8 …..
Vierkantsgetallen: een verzameling van kwadraten
1 2 3 4 5 6
1 4 9 16 25 36
1² 2² 3² 4² 5² 6²
driehoeksgetallen
vierkantsgetallen
Kwadraten hun wortels
1 4 9 16 25 36
√1 √4 √9 √16 √25 √36
1 2 3 4 5 6
Rekenregels machten en wortels