Lab 6 Work & Conservation of Energy PHY250L
Straighterline Introduction to Physics (lab) PHY250L Lab 6 Work & Conservation of Energy
COMPLETE Worksheet (New Version August 2024) Scored 100%
We are a team of experts offering course/class attendance (including final proctored exams!!) for all
Straighterline, Online ATI, HESI, NCLEX, Portage Learning, Sophia, Nursing, Business etc courses.
We also write essays, discussion posts, research papers and school assignments. Should you need any
of these services, Contact us via email: merchantmuchiri@gmail.com or WhatsApp: +1 (540) 753-5914.
Guaranteed Passing!
Lab Report Format Expectations
Utilize college level grammar and formatting when answering text based questions.
Report all equations in a proper mathematical format, with the correct signs and symbols.
Submissions with incomplete or improperly formatted responses may be rejected.
Pre-Lab Questions
1. In this lab, you will conduct three experiments that will demonstrate the concepts of work,
potential energy and kinetic energy. Briefly explain those three concepts and their mathematical
definitions.
When a force moves a mass, it is work. Joules, or (J), is the unit used to represent work, while
(Work=F11d) is the formula used to describe work. When it is positioned along or against (d),
which stands for the displacement, F11 signifies the force that is applied. Work=fdcos(0) would
be more reasonable when the force is traveling together with the movement. Furthermore, the
magnitude and the angle coefficient are needed for this equation.The stored energy connected
to an object's position is called potential energy. This is represented by the formula
(PEgravity=mgh), where m stands for mass, g for gravity, and h for height. The energy
connected to an object's motion is known as kinetic energy. Kinetic energy is expressed by the
formula KE=1/2mv^2. The squared velocity is (v)^2, and the mass is (m)..
,Lab 6 Work & Conservation of Energy PHY250L
2. Both kinetic and potential energy are part of the thrill of roller coasters. Refer to Figure 6,
below.
Figure 6: Different points in a roller coaster’s
a. Describe the kinetic and potential energy at each point of the roller coaster
path. BDE=Kinetic Energy, A,C,E=Potential Energy
b. What happens to the rollercoaster’s kinetic energy between Points B and C?
What happens to its potential energy between these points?
The Kinetic Energy Decreases while the Potential Energy Increases.
c. Why is it important for Point A to be higher than Point C?
Because it permits potential energy to convert to kinetic energy when it reaches
the bottom of a roller coaster. Thus point A must be higher than Point C.
d. What causes the roller coaster train to lose energy over its trip?
After accelerating down and then climbing back up the roller coaster, the roller coaster
loses potential energy. When potential energy assumes control and moves the coaster
downward, it also loses its kinetic energy.
, Lab 6 Work & Conservation of Energy PHY250L
EXPERIMENT 1: WORK DONE BY A SPRING
Introduction Questions
1. In Experiment 1, you will stretch a spring at varying distances and calculate the work required
to do so. The force associated with compressing or stretching a spring is variable and is
quantified by F = kx, where k is the spring constant and x is the displacement.
Given the graph of the force versus displacement graph for a spring in Figure 5, derive an
equation for the amount of work done by the spring. Do not simply state a final equation. Show
the mathematical steps you will take to derive this equation. You must show all work for credit.
(Step1) W=F dx, (Step2) W=kx dx (x=0 to x=1), (Step3) W=(1/2)x^2, (Step4) W=(1/2)k(x1)^2-
(1/2)k(0)^2, (Step5) W=(1/2)k(x1)^2
Figure 5: Force versus displacement of a spring.