Exam (elaborations)
Edexcel AS Level 2024 Pure Maths Paper 1 - 8MAO-01
Institution
PEARSON (PEARSON)
Edexcel AS Level 2024 Pure Maths Paper 1 - 8MAO-01
[Show more]
Preview 4 out of 44 pages
Uploaded on
August 11, 2024
Number of pages
44
Written in
2024/2025
Type
Exam (elaborations)
Contains
Only questions
Study Level
A/AS Level
Examinator
PEARSON (PEARSON)
Subject
math
Unit
Math
All documents for this subject (6)
$4.62
Also available in package deal from $7.27
Added
Add to cart
Add to wishlist
100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached
Also available in package deal (2)
Edexcel AS Level Math May/June 2024 ALL Question papers
1. Exam (elaborations) - Edexcel as level 2024 mechanics paper 22 - 8ma0-22
2. Exam (elaborations) - Edexcel as level 2024 pure maths paper 1 - 8mao-01
3. Exam (elaborations) - Edexcel as level 2024 statistics paper 21 - 8ma0-21
Show more
Edexcel AS Level Mathematics May-June 2024 ALL Question papers & Mark Scheme
1. Exam (elaborations) - Edexcel a level 2024 paper 32 mechanics - 9mao-32
2. Exam (elaborations) - Edexcel as level 2024 pure maths paper 1 - 8mao-01
3. Exam (elaborations) - Edexcel as level 2024 statistics paper 21 - 8ma0-21
4. Exam (elaborations) - Edexcel as level mathematics may-june 2024 mark scheme paper 1 (8ma0-01)
5. Exam (elaborations) - Edexcel as level mathematics may-june 2024 mark scheme paper 21 (8ma0-21)
Show more
Please check the examination details below before entering your candidate information
Candidate surname Other names
Centre Number Candidate Number
By: Tyrion Papers
Pearson Edexcel Level 3 GCE
Thursday 16 May 2024
Afternoon (Time: 2 hours) Paper
reference 8MA0/01
Mathematics
Advanced Subsidiary
PAPER 1: Pure Mathematics
You must have: Total Marks
Mathematical Formulae and Statistical Tables (Green), calculator
Candidates may use any calculator allowed by the regulations of the
Joint Council for Qualifications. Calculators must not have the facility for
symbolic algebra manipulation, differentiation and integration, or have
retrievable mathematical formulae stored in them.
Instructions
•• Use black ink or ball-point pen.
If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
• Fill in the boxes at the top of this page with your name,
centre number and candidate number.
• clearly
Answer all questions and ensure that your answers to parts of questions are
labelled.
• – there may
Answer the questions in the spaces provided
be more space than you need.
• You should show sufficient working to make your methods clear.
Answers without working may not gain full credit.
• Inexact answers should be given to three significant figures unless otherwise stated.
Information
•• AThere
booklet 'Mathematical Formulae and Statistical Tables' is provided.
are 14 questions in this question paper. The total mark for this paper is 100.
• – use this asfora guide
The marks each question are shown in brackets
as to how much time to spend on each question.
Advice
•• Read each question carefully before you start to answer it.
Try to answer every question.
• Check your answers if you have time at the end. Turn over
P74087A
©2024 Pearson Education Ltd. tyrionpapers.com
F:1/1/1/
, email us at: tyrionlay@gmail.com if
you have any issues or queries
1. Find
∫ 2 x −3
x2
dx
giving your answer in simplest form.
(4)
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
2
*P74087A0244*
,Question 1 continued
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
(Total for Question 1 is 4 marks)
3
*P74087A0344* Turn over
, 2. In this question you must show all stages of your working.
Solutions relying entirely on calculator technology are not acceptable.
f (x) = 2x3 – 3ax2 + bx + 8a
where a and b are constants.
Given that (x – 4) is a factor of f (x),
(a) use the factor theorem to show that
10a = 32 + b
(2)
Given also that (x – 2) is a factor of f (x),
(b) express f (x) in the form
f (x) = (2x + k) (x – 4) (x – 2)
where k is a constant to be found.
(4)
(c) Hence,
(i) state the number of real roots of the equation f (x) = 0
1
(ii) write down the largest root of the equation f
x = 0
3 (2)
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
4
*P74087A0444*