100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Sumario Exploración matemática (Banda 6)

Rating
-
Sold
-
Pages
19
Uploaded on
16-08-2024
Written in
2021/2022

La exploración matemática obtuvo banda 6 y combina integrales indefinidas.

Institution
Course










Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Secondary school
Study
Bachillerato
Course
School year
5

Document information

Uploaded on
August 16, 2024
Number of pages
19
Written in
2021/2022
Type
Summary

Subjects

Content preview

MATEMÁTICA NM: ANÁLISIS Y ENFOQUE




PROPUESTAS DE MODELIZACIÓN PARA CALCULAR DISTANCIAS CORTAS A

PARTIR DE COORDENADAS GEOGRÁFICAS UTILIZANDO LA INTEGRAL DEFINIDA

Número de páginas: 19

, Introducción

El avance de la tecnología ha permitido a la humanidad tener todo a su alcance. Aplicaciones

como el GPS, Google Earth o Maps nos permiten conocer nuestra ubicación en tiempo real.

Siendo procesos automatizados que en la antigüedad necesitaban operaciones matemáticas

extensas que limitaban a los marineros, quienes debían conocer su ubicación en el mar. Estos

usaban la fórmula Haversine o también llamada la ley del semiverseno, la forma más conocida

para calcular distancias entre dos puntos de la Tierra. Es utilizada en la Astronomía náutica y

la navegación que emplea las coordenadas geográficas de latitud y longitud convertidas a

radianes. Su fortaleza son las distancias largas donde tiene una gran precisión. Pero se

vuelve imprecisa y con mayor grado de incertidumbre en las distancias cortas, lo cual resulta

interesante, dado que la matemática es una disciplina muy exacta que no cuenta con

imprecisiones que limitan el conocimiento. Por lo que, el presente trabajo desea mejorar la

precisión de la fórmula Haversine para contribuir a los marineros y ubicar distancias en

diversos puntos de las ciudades, de manera similar a como lo realizan los programas y

aplicaciones. De esta forma, se intentará hacer modelizaciones utilizando la integral definida

para calcular distancias cortas usando coordenadas geográficas en un análisis matemático

de metodología inductiva que aplica procedimientos sencillos para lograr el objetivo. Primero,

se extraerán los datos en coordenadas geográficas de ciudades aleatorias utilizando el

programa Google Earth. Segundo, se convertirá los grados sexagesimales a decimales para

poder trabajarlo matemáticamente. Tercero, debemos determinar una función del grado

apropiado para los datos seleccionados y derivarla para aplicar la integral de longitud de arco.

Cuarto, se convertirá el resultado de grados a kilómetros para mostrar la distancia real.

Finalmente, los resultados se comprobarán con la fórmula Haversine para ver la precisión de

las modelizaciones.

, Marco Teórico

Coordenadas geográficas

Son expresadas en grados (º), minutos (’) y segundos (”) que son medidas de arcos

(Sánchez, 2017). Se dividen en Latitud (coordenada horizontal) con sus líneas llamadas

paralelos y Longitud (coordenada vertical) que son círculos máximos denominados

meridianos. Este sistema determina todas las posiciones de la superficie terrestre utilizando

las dos coordenadas angulares de un sistema de coordenadas esféricas que están alineadas

con el eje de rotación de la Tierra (Amaya y Carrera, 2010).

Representación de las Coordenadas Geográficas en el Plano Cartesiano

El mapa del mundo se puede representar en el plano cartesiano, donde el eje de las

abscisas es el meridiano de Greenwich que divide al planeta en Este “E” (positivo) y Oeste

“W” (negativo). Por otro lado, el eje de las ordenadas es ubicado por la Línea Ecuatorial que

divide la Tierra en Hemisferio Norte “N” (positivo) y Hemisferio Sur “S” (negativo) (Sánchez,

2017).

Con fines académicos, la representación invertida de las variaciones de los valores en

X y Y del sistema de coordenadas geográficas que en el plano cartesiano toma la variación

del eje Y (Longitud) como la variación de X (Latitud), lo cual no sería correcto en términos

matemáticos. Pero que nosotros omitimos, ya que nos enfocamos en plantear un modelo que

calcule distancias cortas a partir de coordenadas geográficas. Por lo que, mantenemos

constante Y (Longitud) y variamos X (Latitud) en las ciudades de América Latina

seleccionadas.

𝐸𝑗𝑒 (𝑥, 𝑦)

(𝐿𝑎𝑡𝑖𝑡𝑢𝑑, 𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑)

Equivalencia 1° = 111,195 km (Gis&Beers, 2018)

Todos los datos trabajados se dan en grados hasta que se convierten en km. Para

ello, el radio de la Tierra es 6371 km y la distancia del Ecuador equivale a 2𝜋𝑟.

2𝜋(6371 𝑘𝑚) = 40030,174 𝑘𝑚
$10.49
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
Dussunette16

Get to know the seller

Seller avatar
Dussunette16 Universidad del Pacifico
Follow You need to be logged in order to follow users or courses
Sold
0
Member since
1 year
Number of followers
0
Documents
3
Last sold
-

0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions