,REVIEW OF DIFFERENTIATION
Rules
d d
1. Constant: c=0 2. Constant Multiple: cf (x) = c f (x)
dx dx
d d
3 . Sum: [ f (x) ± g(x)] = f (x) ± g (x) 4. Product: f (x) g(x) = f (x) g (x) + g(x) f (x)
dx dx
d f (x) g(x)f (x) f (x) g (x) d
5. Quotient: = 6. Chain: f ( g(x)) = f ( g(x)) g (x)
dx g(x) [ g(x)]2 dx
d n 1 d 1
7. Power: x = nx n 8. Power: [ g(x)]n = n[ g(x)]n g (x)
dx dx
Functions
Trigonometric:
d d d
9. sin x = cos x 10. cos x = sin x 11. tan x = sec 2 x
dx dx dx
d d d
12. cot x = csc 2 x 13. sec x = sec x tan x 14. csc x = csc x cot x
dx dx dx
Inverse trigonometric:
d 1 1 d 1 1 d 1 1
15. sin x= 16. cos x= 17. tan x=
dx 1 x 2 dx 1 x 2 dx 1 + x2
d 1 1 d 1 1 d 1 1
18. cot x= 2
19. sec x= 20. csc x=
dx 1+ x dx x x 2
1 dx x x2 1
Hyperbolic:
d d d
21. sinh x = cosh x 22. cosh x = sinh x 23. tanh x = sech 2 x
dx dx dx
d d d
24. coth x = csch 2 x 25. sech x = sech x tanh x 26. csch x = csch x coth x
dx dx dx
Inverse hyperbolic:
d 1 1 d 1 1 d 1 1
27. sinh x= 28. cosh x= 29. tanh x=
dx x +12 dx x 2
1 dx 1 x2
d 1 1 d 1 1 d 1 1
30. coth x= 2
31. sech x= 32. csch x=
dx 1 x dx x 1 x2 dx x x2 + 1
Exponential:
d x d x
33. e = ex 34. b = bx (ln b)
dx dx
Logarithmic:
d 1 d 1
35. ln x = 36. log b x =
dx x dx x(ln b)
,BRIEF TABLE OF INTEGRALS
u n 1 1
1.
³u n du
n 1
C , n z 1 2.
³ u du ln u C
1
³ e du e C ³ a du ln a a C
u u u u
3. 4.
5.
³ sin u du cos u C 6.
³ cos u du sin u C
³ sec u du tan u C ³ csc u du cot u C
2 2
7. 8.
9.
³ sec u tan u du sec u C 10.
³ csc u cot u du csc u C
11.
³ tan u du ln cos u C 12.
³ cot u du ln sin u C
13.
³ sec u du ln sec u tan u C 14.
³ csc u du ln csc u cot u C
15.
³ u sin u du sin u u cos u C 16.
³ u cos u du cos u u sin u C
³ sin u du u sin 2u C ³ cos u du u sin 2u C
2 1 1 2 1 1
17. 2 4
18. 2 4
³ tan u du tan u u C ³ cot u du cot u u C
2 2
19. 20.
³ sin u du 2 sin u cos u C ³ cos u du 2 cos u sin u C
3 1 2 3 1 2
21. 3
22. 3
³ tan u du tan u ln cos u C ³ cot u du cot u ln sin u C
3 1 2 3 1 2
23. 2
24. 2
³ sec u du sec u tan u ln sec u tan u C ³ csc u du csc u cot u ln csc u cot u C
3 1 1 3 1 1
25. 2 2
26. 2 2
sin( a b)u sin( a b)u sin(a b)u sin(a b)u
27.
³ sin au cos bu du 2(a b) 2(a b) C 28.
³ cos au cos bu du 2(a b) 2(a b) C
e au eau
29.
³eau sin bu du
a 2 b2
a sin bu b cos bu C 30.
³eau cos bu du
a2 b2
a cos bu b sin bu C
31.
³ sinh u du cosh u C 32.
³ cosh u du sinh u C
³ sech u du tanh u C ³ csch u du coth u C
2 2
33. 34.
35.
³ tanh u du ln(cosh u) C 36.
³ coth u du ln sinh u C
³ ln u du u ln u u C ³ u ln u du u ln u u C
1 2 1 2
37. 38. 2 4
1 u 1
³ a u du sin a C ³ a u du ln u a u
1
39. 40. 2 2
C
2 2 2 2
u 2 a2 u u 2 a2
41.
³ a 2 u 2 du
2
a u2
2
sin 1 C
a
42.
³ a 2 u 2 du
2
a u 2 ln u a 2 u 2 C
2
1 1 u 1 1 au
43.
³a 2
u2
du
a
tan 1 C
a
44.
³a 2
u2
du ln
2a a u
C
Note: Some techniques of integration, such as integration by parts and partial fractions, are
reviewed in the Student Resource and Solutions Manual that accompanies this text.
, TABLE OF LAPLACE TRANSFORMS
f (t) ᏸ{ f (t)} F(s) f (t) ᏸ{ f (t)} F(s)
1 k
1. 1 20. e at sinh kt
s (s a)2 k2
1 sa
2. t 21. e at cosh kt
s2 (s a)2 k2
n! 2ks
3. t n , n a positive integer 22. t sin kt
sn1 (s2 k2)2
Bs
s2 k2
4. t 1/2 23. t cos kt
(s2 k2)2
1 2 ks2
5. t 1/2 24. sin kt kt cos kt
2s3/2 (s k2)2
2
( 1) 2 k3
6. t a , a 1 25. sin kt kt cos kt
s1 (s k2)2
2
k 2 ks
7. sin kt 26. t sinh kt
s2 k2 (s2 k2)2
s s2 k2
8. cos kt 27. t cosh kt
s2 k2 (s2 k2)2
2k 2 eat ebt 1
9. sin2 kt 28.
s(s2 4k2) ab (s a)(s b)
s2 2k2 aeat bebt s
10. cos2 kt 29.
s(s2 4 k2) ab (s a)(s b)
1 k2
11. e at 30. 1 cos kt
sa s(s k2)2
k k3
12. sinh kt 31. kt sin kt
s k2
2
s (s k2)
2 2
s a sin bt b sin at 1
13. cosh kt 32.
s2 k2 ab (a2 b2) (s2 a2)(s2 b2)
2k2 cos bt cos at s
14. sinh2 kt 33.
s(s2 4k2) a2 b2 (s2 a2)(s2 b2)
s2 2k2 2 k2s
15. cosh2 kt 34. sin kt sinh kt
s(s2 4k2) s4 4k4
1 k(s2 2 k2 )
16. te at 35. sin kt cosh kt
(s a)2 s4 4k4
n! k(s2 2k2 )
17. t n e at , n a positive integer 36. cos kt sinh kt
(s a)n1 s4 4k4
k s3
18. e at sin kt 37. cos kt cosh kt
(s a)2 k2 s 4k4
4
1s2 k2
sa 1
19. e at cos kt 38. J 0 (kt)
(s a)2 k2
The benefits of buying summaries with Stuvia:
Guaranteed quality through customer reviews
Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.
Quick and easy check-out
You can quickly pay through credit card for the summaries. There is no membership needed.
Focus on what matters
Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!
Frequently asked questions
What do I get when I buy this document?
You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.
Satisfaction guarantee: how does it work?
Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.
Who am I buying these notes from?
Stuvia is a marketplace, so you are not buying this document from us, but from seller mitchelwiliams. Stuvia facilitates payment to the seller.
Will I be stuck with a subscription?
No, you only buy these notes for $17.99. You're not tied to anything after your purchase.