100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Examen

Bayesian Statistics: Concepts & Definitions 100% Verified.

Puntuación
-
Vendido
-
Páginas
7
Grado
A+
Subido en
28-08-2024
Escrito en
2024/2025

Bayesian Statistics: Concepts & Definitions 100% Verified. Transition Kernel - answerdenoted 'P' - the transition kernel (or density) uniquely describes the dynamics of the chain Under what conditions will the distribution over the states of the Markov Chain converge to a stationary distribution? - answerWhen the chain is 'aperiodic' and 'irreducible' what does aperiodic mean? - answerA markov chain is aperiodic if for any state, the chain can return to that state after a number of transitions that are a multiple of 1 and can also be 1 What does irreducible mean? - answerA markov chain is irreducible if any state can be reached within finite time irrespective of the present state. Pros and Cons of Trace Plots - answerIt's a fairly efficient method but it is NOT robust. Define Burn-In? - answerIt's the initial realizations of the markov chain that we discard as the chain had not converged to the stationary distribution yet. What does it mean in terms of the posterior when there is low autocorrelation? - answerIt means samples are more representative of the posterior distribution The autocorrelation plot shows the correlation between what types of samples? - answerSuccessive samples Define thinning - answerThe process involves taking the kth realization of the markov chain and discarding the rest Thinning: Pros & Cons - answerIt reduces autocorrelation, but it also discards potentially good information. What does BUGS stand for - answerBayesian Inference Using Gibbs Sampling What can transformation can be useful to aid comparability, interpretability, and MCMC convergence? - answerNormalizing the data corresponding to explanatory variable(s) What do we typically conclude when posterior summaries are similar? - answerThe posterior distribution is data-driven. ©THEBRIGHT EXAM STUDY SOLUTIONS 8/22/2024 12:54 PM Explain the Gibbs Sampler (not its algorithm) - answerGibbs sampler uses the set of full conditionals of 'pi' to sample indirectly from the full posterior distribution. Explain the Metropolis-Hastings (not its algorithm). What's important about it? - answerThe MH algorithm sequentially draws obs. from a distribution, conditional only on the last obs., thus inducing a markov chain. Important aspect is that the approximating candidate distribution can be IMPROVED at each step of the simulation . Define mixing - answerThe movement around the parameter space. What can cause poor mixing? - answer1) a high rejection probability 2) very small step sizes Explain the idea behind Data Augmentation - answerWe treat the missing data (or auxiliary variables) as additional parameters to be estimated & form the joint posterior over both these auxiliary variables and models parameters 'theta vector' Explain the idea behind Hierarchical Models - answerThe idea is to LEARN the prior to use for the data we are analyzing by looking at related data sets How are 'no pooling' and 'complete pooling' combined in hierarchical modeling? - answerWe use the other data sets to choose an appropriate prior for our analysis, giving us a good 'initial guess' for the parameter value. What is the Bayes Factor a ratio of? - answerIt's a ratio of posterior odds to prior odds What is the Bayes Factor under the simple hypotheses equal to? - answerThe likelihood ratio! What is the Bayes Factor under the composite hypotheses equal to? - answerA ratio of the "weighted" likelihoods by the densities p(theta) When calculating the Bayes Factor what type of prior distribution should be used? why? - answerA proper prior! Otherwise, the BF becomes arbitrary Main part of inversion sampling? - answerCalculating the inverse CDG for the target distribution. Main part of rejection sampling? - answerUsing an envelope (rectangular box) to generate points at random over this regi

Mostrar más Leer menos
Institución
Bayesian Statistics
Grado
Bayesian Statistics









Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Bayesian Statistics
Grado
Bayesian Statistics

Información del documento

Subido en
28 de agosto de 2024
Número de páginas
7
Escrito en
2024/2025
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

©THEBRIGHT EXAM STUDY SOLUTIONS 8/22/2024 12:54 PM


Bayesian Statistics: Concepts & Definitions
100% Verified.


Transition Kernel - answer✔✔denoted 'P' - the transition kernel (or density) uniquely describes
the dynamics of the chain
Under what conditions will the distribution over the states of the Markov Chain converge to a
stationary distribution? - answer✔✔When the chain is 'aperiodic' and 'irreducible'

what does aperiodic mean? - answer✔✔A markov chain is aperiodic if for any state, the chain
can return to that state after a number of transitions that are a multiple of 1 and can also be 1

What does irreducible mean? - answer✔✔A markov chain is irreducible if any state can be
reached within finite time irrespective of the present state.

Pros and Cons of Trace Plots - answer✔✔It's a fairly efficient method but it is NOT robust.

Define Burn-In? - answer✔✔It's the initial realizations of the markov chain that we discard as
the chain had not converged to the stationary distribution yet.

What does it mean in terms of the posterior when there is low autocorrelation? - answer✔✔It
means samples are more representative of the posterior distribution
The autocorrelation plot shows the correlation between what types of samples? -
answer✔✔Successive samples

Define thinning - answer✔✔The process involves taking the kth realization of the markov chain
and discarding the rest

Thinning: Pros & Cons - answer✔✔It reduces autocorrelation, but it also discards potentially
good information.

What does BUGS stand for - answer✔✔Bayesian Inference Using Gibbs Sampling
What can transformation can be useful to aid comparability, interpretability, and MCMC
convergence? - answer✔✔Normalizing the data corresponding to explanatory variable(s)

What do we typically conclude when posterior summaries are similar? - answer✔✔The posterior
distribution is data-driven.

, ©THEBRIGHT EXAM STUDY SOLUTIONS 8/22/2024 12:54 PM

Explain the Gibbs Sampler (not its algorithm) - answer✔✔Gibbs sampler uses the set of full
conditionals of 'pi' to sample indirectly from the full posterior distribution.

Explain the Metropolis-Hastings (not its algorithm). What's important about it? - answer✔✔The
MH algorithm sequentially draws obs. from a distribution, conditional only on the last obs., thus
inducing a markov chain.


Important aspect is that the approximating candidate distribution can be IMPROVED at each
step of the simulation .

Define mixing - answer✔✔The movement around the parameter space.

What can cause poor mixing? - answer✔✔1) a high rejection probability


2) very small step sizes

Explain the idea behind Data Augmentation - answer✔✔We treat the missing data (or auxiliary
variables) as additional parameters to be estimated & form the joint posterior over both these
auxiliary variables and models parameters 'theta vector'

Explain the idea behind Hierarchical Models - answer✔✔The idea is to LEARN the prior to use
for the data we are analyzing by looking at related data sets

How are 'no pooling' and 'complete pooling' combined in hierarchical modeling? - answer✔✔We
use the other data sets to choose an appropriate prior for our analysis, giving us a good 'initial
guess' for the parameter value.

What is the Bayes Factor a ratio of? - answer✔✔It's a ratio of posterior odds to prior odds

What is the Bayes Factor under the simple hypotheses equal to? - answer✔✔The likelihood
ratio!

What is the Bayes Factor under the composite hypotheses equal to? - answer✔✔A ratio of the
"weighted" likelihoods by the densities p(theta)
When calculating the Bayes Factor what type of prior distribution should be used? why? -
answer✔✔A proper prior! Otherwise, the BF becomes arbitrary

Main part of inversion sampling? - answer✔✔Calculating the inverse CDG for the target
distribution.

Main part of rejection sampling? - answer✔✔Using an envelope (rectangular box) to generate
points at random over this region
$11.49
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
Thebright Florida State University
Ver perfil
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
177
Miembro desde
1 año
Número de seguidores
6
Documentos
12345
Última venta
3 días hace
Topscore Emporium.

On this page, you find verified, updated and accurate documents and package deals.

3.8

35 reseñas

5
13
4
10
3
7
2
1
1
4

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes