100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Management Research Methods 2 (MRM2) - Summary - University of Amsterdam (UvA) $6.33
Add to cart

Summary

Management Research Methods 2 (MRM2) - Summary - University of Amsterdam (UvA)

 147 views  6 purchases
  • Course
  • Institution

All notes from the lectures and study materials summarized to optimally prepare you for the exam. Including supporting images. Management Research Methods 2 (MRM2) - Summary / Samenvatting - University of Amsterdam / Universiteit van Amsterdam - Pre-Master's in Business Administration - Pre-Master...

[Show more]

Preview 4 out of 32  pages

  • November 18, 2019
  • 32
  • 2017/2018
  • Summary
avatar-seller
Content
Analysis of Variance................................................................................................................................. 3
Conceptual Models.............................................................................................................................. 3
Moderation...................................................................................................................................... 3
Mediation ........................................................................................................................................ 3
ANOVA ................................................................................................................................................. 4
Conditions........................................................................................................................................ 4
Hypothesis ....................................................................................................................................... 4
Test Statistics ................................................................................................................................... 5
Planned Contrast ............................................................................................................................. 9
Post-Hoc Tests ................................................................................................................................. 9
Moderation in ANOVA....................................................................................................................... 10
Factorial ANOVA ................................................................................................................................ 11
Conditions...................................................................................................................................... 11
Mean Squares ................................................................................................................................ 12
F-Test ............................................................................................................................................. 12
Partial Eta Squared (η2) ................................................................................................................. 13
Post-Hoc Tests ............................................................................................................................... 13
Regression ............................................................................................................................................. 14
Assumptions of Regression ........................................................................................................... 15
Model Testing ................................................................................................................................ 16
Categorical PV´s in regression and dummy variables ....................................................................... 18
Interpretation of β-coefficient ...................................................................................................... 19
Multicollinearity ................................................................................................................................ 20
Detecting multicollinearity ............................................................................................................ 20
Rules of thumb .............................................................................................................................. 20
Mediation .......................................................................................................................................... 21
Logistic Regression ............................................................................................................................ 24
Pseude-R2 ...................................................................................................................................... 24
Model Statistics ............................................................................................................................. 24
Coefficients .................................................................................................................................... 25
Factor Analysis (FA) ........................................................................................................................... 26
Principal Component Analysis (PCA) ............................................................................................. 26
Initial checks .................................................................................................................................. 26
Main analysis ................................................................................................................................. 27

1

, Reliability Analysis ............................................................................................................................. 29
Cronbach’s Alpha........................................................................................................................... 29
Further Analysis ............................................................................................................................. 30
References ............................................................................................................................................. 31




2

,Analysis of Variance

Conceptual Models
Conceptual models are visual representations of relations between theoretical constructs (and
variables) of interest.

Outcome variable (OV) = Dependent variable → Dependent upon other variables

Predictor variable (PV) = Independent variable → Not dependent upon other variables

Both OV’s and PV’s can have different measurement scales:

• Categorical
• Quantitative

Moderation
The proposed effect is stronger/weaker in certain settings. One variable moderates the relationship
between two other variables.

For example: “Mobile ownership only leads to higher mobile spending when there are options to pay
via mobile (not when there are no options to pay via mobile).”




Mediation
The proposed effect “goes through” another variable. One variable mediates the relationship
between two other variables.

For example: “The positive effect of mobile ownership on online mobile spending is mediated by
mobile browsing.”




3

, Rules for Conceptual Modals
• The boxes represent variables;
• Arrows represent relationships between variables;
• Arrows go from predictor variables (PV) to outcome variables (OV)

ANOVA
ANOVA is “Analysis of Variance” → Examine how much of the variance in the data can be explained
by the independent variable.

ANOVA is used to test whether statistically significant differences exist in scores on a quantitative
outcome variable, between different levels (groups) of a categorical predictor variable.

Variance: The average of the squared differences from the mean.




Conditions
(Between-subject) ANOVA is used when:

✓ Outcome Variable = Quantitative;
✓ Predictor Variable = Categorical > 2 groups;
✓ Between-subject design (Everyone participates in one experiment group only);
✓ Variance is homogenous across groups;
o Levene Statistic (H0: Variances are homogenous.)
✓ Residuals are normally distributed

Hypothesis
Hypotheses in ANOVA

H0: There is no difference in outcome variable scores between different levels of the independent
variable. → μ1 = μ2 = … = μi

H1: There is a difference in outcome variable scores between at least two levels of the independent
variable. → μ1 ≠ μ2 = … ≠ μi




4

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller hjdeman. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $6.33. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

51292 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 15 years now

Start selling
$6.33  6x  sold
  • (0)
Add to cart
Added