Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Resume

Samenvatting hoofdstuk 7 uit theorieboek van Moore & Mccabe

Vendu
1
Pages
14
Publié le
20-11-2019
Écrit en
2019/2020

Samenvatting hoofdstuk 7 uit theorieboek van Moore & Mccabe

Établissement
Cours









Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

Livre connecté

École, étude et sujet

Établissement
Cours
Cours

Infos sur le Document

Livre entier ?
Non
Quels chapitres sont résumés ?
H7
Publié le
20 novembre 2019
Nombre de pages
14
Écrit en
2019/2020
Type
Resume

Sujets

Aperçu du contenu

STATISTIEK

3. INFERENTIE VOOR VERDELINGEN




INFERENTIE VOOR HET GEMIDDELDE VAN EEN POPULATIE
 Zowel betrouwbaarheidsintervallen als significantietoetsen voor het gemiddelde μ van een normale
populatie zijn gebaseerd op het steekproefgemiddelde x́ , dat de onbekende μ schat
 De steekproefverdeling van x́ hangt af van μ
 De standaardafwijking van de steekproef wordt gebruikt om de standaardafwijking van de populatie
te schatten

DE T-PROCEDURES VOOR EEN ENKELVOUDIGE STEEKPROEF

STANDAARDFOUT
Als de standaardafwijking van een steekproefgrootheid uit de gegevens wordt geschat, wordt het
resultaat de standaardfout van de steekproefgrootheid genoemd. De standaardfout voor het
steekproefgemiddelde is
s
S E X́ =
√n
 Het gestandaardiseerde steeproefgemiddelde vormt de basis voor z-procedures voor inferentie
omtrent μ, als σ bekend is
x́−μ
z=
σ
√n
 Deze steekproefgrootheid heeft de standaardnormale verdeling N(0,1)
s σ
 Als we de standaardfout substitueren voor de standaardafwijking van x́ , heeft de
√n √n
steekproefgrootheid niet een normale verdeling
 Het heeft een verdeling die voor ons nieuw is, namelijk een t-verdeling
DE t-VERDELINGEN
Veronderstel dat er een EAS van grootte n is getrokken uit een N( μ , σ ¿ populatie. Dan heeft de t-
toetsingsgrootheid
x́−μ
t=
s
√n
de t-verdeling met n-1 vrijheidsgraden
 Voor elke steekproefomvang is er een andere t-verdeling
 Een specifieke t-verdeling wordt gespecifieerd door het aantal vrijheidsgraden op te geven




1

,  Het aantal vrijheidsgraden van deze t-steekproefgrootheid is afkomstig van de steekproef-
standaardafwijking s in de noemer van t
 n-1 van de afwijkingen kunnen vrijelijk veranderen, en dat aantal is het aantal vrijheidsgraden
 t-verdeling met k-vrijheidsgraden worden aangeduid met t(k)
 De dichtheidskrommen van de t(k)-verdelingen lijken in vorm op standaardnormale kromme
o Ze zijn symmetrisch rondom 0 en zijn klokvormig
 De spreiding van de t-verdelingen is ietwat groter dan die van de standaardnormale verdeling
o Dit is te wijten aan de extra variabiliteit die veroorzaakt wordt door de substitutie van de
stochastische variabele s voor de vaste parameter σ
 Bij toename van het aantal vrijheidsgraden k nadert de dichtheidskromme van t(k) steeds dichter de
N(0,1)-kromme
 De gelijkvormigheid is duidelijk, evenals het feit dat de t-verdeling in vergelijking met de
standaardnormale verdeling in de staarten meer kans heeft en in het centrum minder kans


HET BETROUWBAARHEIDSINTERVAL BIJ ÉÉN-STEEKPROEF T-TOETS
 We moeten nu overschrijdingskansen en kritieke waarden uit t gebruiken, in plaats van de
overeenkomstige normale waarden z
HET t-BETROUWBAARHEIDSINTERVAL VOOR EEN ENKELVOUDIGE STEEKPROEF


Veronderstel dat er een EAS is getrokken uit een populatie met onbekend gemiddelde μ. Een
betrouwbaarheidsinterval van niveau C voor μ is
s
x́ ± t ¿
√n
waar t* de waarde is voor de t(n-1)-verdeling waarbij er een oppervlak C ligt tussen -t* en t*. De grootheid
s
t¿
√n
is de foutmarge. Dit interval is correct als de populatieverdeling normaal is en in andere gevallen voor
grote n bij benadering correct




DE ÉÉN-STEEKPROEF T-TOETS
DE t-TOETS VOOR EEN ENKELVOUDIGE STEEKPROEF
Veronderstel dat een EAS met omvang n is getrokken uit een populatie met onbekende verwachting μ.

Om de hypothese H 0 : μ=μ0 te toetsen op basis van een EAS met omvang n, berekenen we de
toetsingsgrootheid t voor een EAS




2
$7.18
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien


Document également disponible en groupe

Reviews from verified buyers

Affichage de tous les avis
5 année de cela

4.0

1 revues

5
0
4
1
3
0
2
0
1
0
Avis fiables sur Stuvia

Tous les avis sont réalisés par de vrais utilisateurs de Stuvia après des achats vérifiés.

Faites connaissance avec le vendeur

Seller avatar
Les scores de réputation sont basés sur le nombre de documents qu'un vendeur a vendus contre paiement ainsi que sur les avis qu'il a reçu pour ces documents. Il y a trois niveaux: Bronze, Argent et Or. Plus la réputation est bonne, plus vous pouvez faire confiance sur la qualité du travail des vendeurs.
kainysomers Katholieke Universiteit Leuven
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
21
Membre depuis
9 année
Nombre de followers
10
Documents
16
Dernière vente
3 année de cela

4.1

8 revues

5
1
4
7
3
0
2
0
1
0

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions