100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Samenvatting hoofdstuk 6 uit theorieboek van Moore & Mccabe

Rating
4.0
(1)
Sold
1
Pages
14
Uploaded on
20-11-2019
Written in
2019/2020

Samenvatting hoofdstuk 6 uit theorieboek van Moore & Mccabe

Institution
Course









Whoops! We can’t load your doc right now. Try again or contact support.

Connected book

Written for

Institution
Study
Course

Document information

Summarized whole book?
No
Which chapters are summarized?
H6
Uploaded on
November 20, 2019
Number of pages
14
Written in
2019/2020
Type
Summary

Subjects

Content preview

STATISTIEK

3. INFERENTIE



 Bij formele inferentie ligt de nadruk op het onderbouwen van onze conclusies met kansberekeningen
 2 types
1. Betrouwbaarheidsintervallen
2. Significantietoetsen
beide methoden leveren kansen op die uitdrukken wat er zou gebeuren als we de inferentiemethode
vele keren zouden gebruiken
 Als u statistische inferentie gebruikt, handelt u alsof de gegevens afkomstig zijn uit een aselecte steekproef
of uit een gerandomiseerd experiment


SCHATTEN MET BETROUWBAARHEID

 X́ is een zuivere schatter van µ
 De wet van de grote aantallen zegt dat het steekproefgemiddelde moet naderen tot de
populatieverwachting als de steekproefomvang toeneemt
 Zuiverheid zegt alleen maar dat er geen systematische tendens is om de werkelijke waarde te overschatten
of te onderschatten

STATISTISCHE BETROUWBAARHEID


 Vragen omtrent variantie worden beantwoord door te kijken naar de spreiding
 De taal van de statistische inferentie gebruikt dit gegeven over wat er op de lange termijn zou gebeuren,
om ons vertrouwen uit te drukken in de resultaten van een enkelvoudige steekproef


BETROUWBAARHEIDSINTERVALLEN
 Vorm van de betrouwbaarheidsintervallen
schatting ± foutmarge
 De schatting is onze geschatte waarde voor de onbekende parameter
 De foutmarge laat zien hoeveel nauwkeurigheid wij onze schatting toekennen, gebaseerd op de
variabiliteit van de schatting
 Het betrouwbaarheidsniveau laat zien hoeveel vertrouwen wij erin hebben dat het interval de werkelijke
populatieverwachting µ zal bevatten




 Twee belangrijke dingen
1. Het is een interval van de vorm (a , b ), waarbij a en b getallen zijn die vanuit de data zijn berekend




1

, 2. Het interval heeft een eigenschap, een zogenoemd betrouwbaarheidsniveau, dat de waarschijnlijkheid
oplevert dat het interval de parameter bevat
 Gebruikers kunnen het betrouwbaarheidsinterval kiezen, maar in de meeste situaties is dat 95%
o Heel soms 90% of 99%
 Betrouwbaarheidsniveau wordt weergegeven door C


BETROUWBAARHEIDSINTERVAL
Een betrouwbaarheidsinterval van niveau C voor een parameter is een interval dat is berekend uit de
steekproefdata, volgens een methode die kans C heeft om een interval op te leveren dat de werkelijke
waarde van de parameter bevat.


BETROUWBAARHEIDSINTERVAL VOOR EEN POPULATIEGEMIDDELDE
 Getal Z* zoeken, zodanig dat elke normale verdeling met kans C binnen ±Z* standaardafwijkingen van zijn
verwachting ligt

Z* 1,645 1,960 2,576
C 90% 95% 99%

 Elke normale kromme heeft de kans C tussen het punt Z* standaardafwijkingen onder de verwachting en
het punt op Z* standaardafwijkingen boven de verwachting
σ
 Het steekproefgemiddelde X́ heeft de normale verdeling met verwachting µ en standaardafwijking
√n
o x́ ligt tussen
Daarom is de kans dat
¿σ ¿ σ
μ− z en μ+ z
√n √n
gelijk aan C


o Dat is precies hetzelfde als zeggen dat het onbekende populatiegemiddelde μ ligt tussen
σ σ
x́−z ¿ en x́+ z ¿
√n √n
z¿ σ
Dit wil zeggen: er is een kans C dat het interval x́ ± het gemiddelde μ bevat.
√n
z¿ σ
 De schatting van de onbekende μ en de foutmarge is
√n



BETROUWBAARHEIDSINTERVAL VOOR EEN POPULATIEGEMIDDELDE
Trek een EAS van omvang n uit een populatie met een onbekende gemiddelde μ en een bekende
standaardafwijking σ .De foutmarge voor een betrouwbaarheidsinterval van niveau C voor μ is
σ
m=z ¿
√n
Hierbij is z* de waarde voor de standaardnormale curve met oppervlakte C tussen de kritieke punten -z*
en z*. Het niveau C betrouwbaarheidsinterval voor μ is
x́ ± m
Dit interval is exact correct als de populatieverdeling normaal is en is in andere gevallen voor grote n bij
benadering correct




2
$7.18
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached


Also available in package deal

Reviews from verified buyers

Showing all reviews
5 year ago

4.0

1 reviews

5
0
4
1
3
0
2
0
1
0
Trustworthy reviews on Stuvia

All reviews are made by real Stuvia users after verified purchases.

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
kainysomers Katholieke Universiteit Leuven
Follow You need to be logged in order to follow users or courses
Sold
21
Member since
9 year
Number of followers
10
Documents
16
Last sold
3 year ago

4.1

8 reviews

5
1
4
7
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions