Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien
logo-home
Econometrics: CH11 Further Issues in Using OLS with Time Series Data || with 100% Error-free Solutions. $10.69   Ajouter au panier

Examen

Econometrics: CH11 Further Issues in Using OLS with Time Series Data || with 100% Error-free Solutions.

 6 vues  0 fois vendu
  • Cours
  • Econometrics: CH11 Further Issues in Using OLS wit
  • Établissement
  • Econometrics: CH11 Further Issues In Using OLS Wit

What is a stationary time series process? correct answers One whose probability distributions are stable over time - if we take any collection of random variables in the sequence and then shift that sequence ahead by h time periods, the joint probability remains unchanged When is a stochastic pr...

[Montrer plus]

Aperçu 2 sur 6  pages

  • 10 septembre 2024
  • 6
  • 2024/2025
  • Examen
  • Questions et réponses
  • Econometrics: CH11 Further Issues in Using OLS wit
  • Econometrics: CH11 Further Issues in Using OLS wit
avatar-seller
FullyFocus
Econometrics: CH11 Further Issues in Using OLS with Time
Series Data || with 100% Error-free Solutions.
What is a stationary time series process? correct answers One whose probability distributions are
stable over time - if we take any collection of random variables in the sequence and then shift
that sequence ahead by h time periods, the joint probability remains unchanged

When is a stochastic process stationary? correct answers a stochastic process is stationary if for
every collection of indices is greater than 1 and the previous time period, the joint distribution of
the x values is the same as the joint distribution of x values plus h time periods.

What does stationarity require? correct answers that the nature of any correlation between
adjacent terms is the same across all time periods.

What do you call a stochastic process that is not stationary? correct answers a nonstationary
process

Discuss the restrictive nature of the assumptions that we have used so far correct answers Strict
exogeneity, homoskedasticity, and no serial correlation are very demanding requirements,
especially in the time series context

Statistical inference rests on the validity of the normality assumption

Much weaker assumptions are needed if the sample size is large

A key requirement for large sample analysis of time series is that the time series in question are
stationary and weakly dependent

What is a covariance stationary process? correct answers a stochastic process with a finite second
moment is covariance stationary its its expected value, variance and its covariances are constant
over time

- depends only on h and not on t
- focuses only on the first two moments of the stochastic process

Which is a stronger covariance stationary or stationary and what do we call the stronger one?
correct answers Stationarity is stronger and we call it strict stationarity

What is weak dependence? correct answers Weak dependence places restrictions on how
strongly related the random variables xt and x(t + h) can be as time distance between them (h)
gets large

When is a stationary time series process said to be weakly dependent? correct answers if xt and
x(t + h) are almost independent as h increases without bound

, When is a non stationary time series process said to be weakly dependent? correct answers if xt
and x(t + h) are almost independent as h increases without bound but we must assume that the
concept of being almost independent does not depend on the starting point, t.

What is an implication of weak dependence? correct answers correlation between xt and x(t + h)
must converge to zero if h grows to infinity.

- as the variables get farther apart in time, the correlation between them becomes smaller and
smaller

What do we call covariance stationary sequences where correlation between xt and x(t + h) must
converge to zero if h grows to infinity? correct answers asymptotically uncorrelated

Why is weak dependence important for regression analysis? correct answers it replaces the
assumption of random sampling in implying that the law of large numbers and the central limit
theorem hold

What do we need for the LLN and CLM to hold? correct answers need the individual
observations must not be too strongly related to each other, in particular their relation must
become weaker the farther they are apart

What is the simplest example of weakly dependent variable? correct answers independent
identically distributed sequence

What is a moving average process of order 1 [MA(1)]? correct answers et is an independent and
identical distributed (i.i.d) sequence, with mean 0 and variance 𝜎𝑒^2

What are the characteristics of MA(1)? correct answers An MA(1) is a stationary, weakly
dependent sequence, and the LLN and CLT can be applied to it.

What is the more popular example for weakly dependent time series? correct answers
Autoregressive process of Order One [AR(1)]

What is the autoregressive process of order one? correct answers et is an independent and
identical distribud (i.i.d) sequence with mean 0 and variance 𝜎𝑒^2, and the starting point of a
time series process is y0 at t=0. Assume et is independent of y0 and E(y0 )=0

Time series model whose current value depends on its most recent value plus an unpredictable
disturbance

What is the crucial assumption for weak dependence of AR(1)? correct answers Stability
condition

If the stability condition holds, why is the process weakly dependent? correct answers process is
weakly dependent because serial correlation
converges to zero as the distance between observations grows to infinity

Les avantages d'acheter des résumés chez Stuvia:

Qualité garantie par les avis des clients

Qualité garantie par les avis des clients

Les clients de Stuvia ont évalués plus de 700 000 résumés. C'est comme ça que vous savez que vous achetez les meilleurs documents.

L’achat facile et rapide

L’achat facile et rapide

Vous pouvez payer rapidement avec iDeal, carte de crédit ou Stuvia-crédit pour les résumés. Il n'y a pas d'adhésion nécessaire.

Focus sur l’essentiel

Focus sur l’essentiel

Vos camarades écrivent eux-mêmes les notes d’étude, c’est pourquoi les documents sont toujours fiables et à jour. Cela garantit que vous arrivez rapidement au coeur du matériel.

Foire aux questions

Qu'est-ce que j'obtiens en achetant ce document ?

Vous obtenez un PDF, disponible immédiatement après votre achat. Le document acheté est accessible à tout moment, n'importe où et indéfiniment via votre profil.

Garantie de remboursement : comment ça marche ?

Notre garantie de satisfaction garantit que vous trouverez toujours un document d'étude qui vous convient. Vous remplissez un formulaire et notre équipe du service client s'occupe du reste.

Auprès de qui est-ce que j'achète ce résumé ?

Stuvia est une place de marché. Alors, vous n'achetez donc pas ce document chez nous, mais auprès du vendeur FullyFocus. Stuvia facilite les paiements au vendeur.

Est-ce que j'aurai un abonnement?

Non, vous n'achetez ce résumé que pour $10.69. Vous n'êtes lié à rien après votre achat.

Peut-on faire confiance à Stuvia ?

4.6 étoiles sur Google & Trustpilot (+1000 avis)

71184 résumés ont été vendus ces 30 derniers jours

Fondée en 2010, la référence pour acheter des résumés depuis déjà 14 ans

Commencez à vendre!
$10.69
  • (0)
  Ajouter