Een duidelijke samenvatting van alles wat je moet weten voor de Landelijke kennistoets wiskunde. De samenvatting is gebaseerd op, op de oefentoets op 10voordeleraar, oefentoetsen op Brightspace en mijn aantekeningen.
Landelijke kennistoets formule overzicht
Inhoud
Functies..................................................................................................................................................2
Algemeen............................................................................................................................................2
Goniometrie.......................................................................................................................................2
Logaritmes..........................................................................................................................................4
Inverse functies...................................................................................................................................5
Exponentiële functies.........................................................................................................................5
Dynamische modellen............................................................................................................................6
Statistiek en Combinatoriek....................................................................................................................7
Statistiek.............................................................................................................................................7
Combinatoriek....................................................................................................................................7
Analytische meetkunde..........................................................................................................................9
Integreren.............................................................................................................................................10
Getallen................................................................................................................................................11
Getaltheorie.....................................................................................................................................11
Complexe getallen............................................................................................................................12
Aanschouwelijke meetkunde................................................................................................................13
Synthetische meetkunde......................................................................................................................14
Kansverdelingen...................................................................................................................................15
Differentiëren.......................................................................................................................................16
Problemen en Bewijzen........................................................................................................................17
Matrices en Grafen...............................................................................................................................18
,Functies
Algemeen
Functies met de bijbehorende inverse, afgeleide en primitieve
Functie f (x) Inverse f −1 (x) Afgeleide f ’ ( x ) Primitieve ∫ f ( x ) dx
1 −¿ 0 x +c
x x 1 1 2
x +c
2
x2 √x 2x 1 3
x +c
3
√x x2 1 2 2
3
x +c
2√ x 3
1 1 −1 ln ( x ) +1
x x x2
xn 1
n x n−1 nn +1
xn +c
n+1
e
x
ln ( x ) e
x x
e +c
a
x
ln ( x ) x
a ln ( a ) ax
+c
ln ( a ) ln ( a )
ln ( x ) ex 1 xln ( x ) +c
x
sin ( x ) arcsin ( x ) oftewel sin−1 ( x ) cos ( x ) −cos ( x ) +c
cos ( x ) arccos ( x ) oftewel cos−1 ( x ) −sin ( x) sin ( x ) +c
tan ( x ) arctan (x) ofterwel tan −1 (x ) 1+ tan 2 (x) −ln|cos ( x )|+ c
arcsin ( x ) sin ( x) 1 −¿
√1−x2
arccos ( x ) cos ( x ) −1 −¿
√1−x 2
arctan (x) tan ( x ) 1 −¿
1+ x2
f ( g ( x )) g
−1
( f −1 ( x ) ) f ( g ( x )) g ( x )
' '
−¿
f ( x ) + g(x ) −¿ ' '
f ( x )+ g ( x ) ∫ f ( x ) dx +∫ g ( x ) dx
Het vinden van oplossingen van vergelijkingen met absoluut tekens
Goniometrie
De periode van een trigonometrische functie bepalen:
2π
Er geldt altijd: periode=
|a|
o Hierbij is a het getal voor de variabele. Dit is bruikbaar voor zowel de sinus als voor
de cosinus
, Als het een samengestelde functie is ga je opzoek naar de KGV (kleinste gemeenschappelijke
veelvoud)
o Dit doe je door ze los van elkaar te berekenen en dan de KGV te vinden.
Exacte waardentabel voor de sinus, cosinus en de tangens
sin ( x )=sin ( x +2 π ) =sin ( π −x)
−sin ( x )=sin ( x + π )=sin (−x)
(
sin ( x )=cos π−x
1
2 )
sin ( 2 x ) =2 sin ( x ) cos ( x )
2 2
sin ( x )=1−cos ( x)
o Komt uit deze cos 2 ( x ) +sin2 ( x )=1
Rekenregels cosinus formules
cos ( x )=cos ( x+ 2 π )=cos (−x )
−cos ( x )=cos ( x+ π )=cos ( x−π )
( 1
) (
cos ( x )=sin π−x =sin π + x
2
1
2 )
2 2 2
cos ( 2 x )=2 cos ( x )−1=1−2sin ( x )=cos ( x ) −sin ( x )
cos 2 ( x )=1−sin2 ( x)
o Komt uit deze cos 2 ( x ) +sin2 ( x )=1
Rekenregels tangens formules
tan ( x )=tan ( x+ 2 π )=tan ( x+ π )
−tan ( x )=tan (−x )=tan ( π −x )
1
tan ( x )=cot ( π−x )
2
sin ( x )
tan ( x )=
cos (x )
Sinus, cosinus en tangensvergelijkingen oplossen
sin ( x )=sin ( y )
o x= y +2 kπ ∨ x=π − y +2 kπ
The benefits of buying summaries with Stuvia:
Guaranteed quality through customer reviews
Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.
Quick and easy check-out
You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.
Focus on what matters
Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!
Frequently asked questions
What do I get when I buy this document?
You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.
Satisfaction guarantee: how does it work?
Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.
Who am I buying these notes from?
Stuvia is a marketplace, so you are not buying this document from us, but from seller semanur130. Stuvia facilitates payment to the seller.
Will I be stuck with a subscription?
No, you only buy these notes for $18.22. You're not tied to anything after your purchase.