100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
SOLUTION MANUAL Game Theory Basics 1st Edition By Bernhard von Stengel. Chapters 1 - 12 $17.99   Add to cart

Exam (elaborations)

SOLUTION MANUAL Game Theory Basics 1st Edition By Bernhard von Stengel. Chapters 1 - 12

 1 view  0 purchase
  • Course
  • Game Theory Basics 1st Edition
  • Institution
  • Game Theory Basics 1st Edition

SOLUTION MANUAL Game Theory Basics 1st Edition By Bernhard von Stengel. Chapters 1 - 12

Preview 4 out of 68  pages

  • October 4, 2024
  • 68
  • 2024/2025
  • Exam (elaborations)
  • Questions & answers
  • Game Theory Basics 1st Edition
  • Game Theory Basics 1st Edition
avatar-seller
Testbanknurseproffessor
SOLUTION MANUAL
Game Theory Basics 1st Edition
By Bernhard von Stengel. Chapters 1 - 12




1

,TABLE OF CONTENTS 6 6 6




1 - Nim and Combinatorial Games
6 6 6 6 6




2 - Congestion Games
6 6 6




3 - Games in Strategic Form
6 6 6 6 6




4 - Game Trees with Perfect Information
6 6 6 6 6 6




5 - Expected Utility
6 6 6




6 - Mixed Equilibrium
6 6 6




7 - Brouwer’s Fixed-Point Theorem
6 6 6 6




8 - Zero-Sum Games
6 6 6




9 - Geometry of Equilibria in Bimatrix Games
6 6 6 6 6 6 6




10 - Game Trees with Imperfect Information
6 6 6 6 6 6




11 - Bargaining
6 6




12 - Correlated Equilibrium
6 6 6




2

,Game Theory Basics
6 6




Solutions to Exercises
6 6



©6 Bernhard6von6Stengel62022

Solution6to6Exercise61.1

(a) Let6≤6be6defined6by6(1.7).6 To6show6that6≤6is6transitive,6consider6x,6y,6z6with6x6 ≤6y6and6y6≤6z.6If6x6=6y6t
hen6x6≤6z,6and6if6y6=6z6then6also6x6≤6z.6So6the6only6case6left6is6x6<6y6and6 y6 <6 z,6which6implies6x6 <6 z6
because6<6is6transitive,6and6hence6x6 ≤6z.
Clearly,6≤6is6reflexive6because6x6=6x6and6therefore6x6 ≤6x.
To6show6that66666≤is6antisymmetric,6consider6x6and6y6with6x66666y6and6y≤
66666x.6If6we6had6x6≠6y6then6x6<

6y6and6y6<6x,6and6by6transitivity6x6<6x6which6contradicts6(1.38).6Hence6x6 =6 y,6as6required.6 This6sh

ows6that6≤6is6a6partial6order.
Finally,6we6show6(1.6),6so6we6have6to6show6that6x6<6y6implies6x666y6and6x6≠6y6≤and6vice6versa.6Let6x6
<6y,6which6implies6x6y6by6(1.7).6If6we6had6x6=6y6then ≤ 6x6<6x,6contradicting6(1.38),6so6we6also6have6x6
≠6y.6 Conversely,6x666 y6and6x6≠6y6imply6by6(1.7)6x6 <6 y6or6 x6 =6 y6where6the
≤ 6second6case6is6excluded,6he
nce6 x6 <6 y,6as6required.
(b) Consider6a6partial6order6and≤ 6assume6(1.6)6as6a6definition6of6<.6To6show6that6<6is6transitive,6sup

pose6x6<6y,6that6is,6x6y6and6x6≠6y,6and6y6<6z,≤6that6is,6y6z6and6y6≠6z.6Because6666is6transitive,
≤ 6x6666z.6If6we
6had6x6=6z6then6x66666y6and6y66666x6and6hence6x6=6y6by6antisymmetry6of6666,6which6contradicts6 x6 ≠6 y,6s
≤ ≤ ≤ ≤
o6we6have6 x6666z6 and6 x6 ≠6 z,6that6is,6x6 <6 z6by6(1.6),6as6required.
≤ ≤
Also,6<6is6irreflexive,6because6x6<6x6would6by6definition6mean6x666x6and6x6≠6x,≤6but6the6latter6is6not
6true.


Finally,6we6show6(1.7),6so6we6have6to6show6that6x6 ≤6y6implies6x6<6y6or6x6=6y6and6vice6versa,6given6
that6<6is6defined6by6(1.6).6Let6x6≤6y.6Then6if6x6=6y,6we6are6done,6otherwise6x6≠6y6and6then6by6defin
ition6x6<6y.6Hence,6x6≤6y6implies6x6<6y6or6x6=6y.6Conversely,6suppose6x6 <6 y6or6x6=6y.6 If6x6 <6 y6then6
x6 ≤6y6by6(1.6),6and6if6x6=6y6then6x6 ≤6 y6because6≤6is6reflexive.6 This6completes6the6proof.

Solution6to6Exercise61.2

(a) In6 analysing6 the6 games6 of6 three6 Nim6 heaps6 where6 one6 heap6 has6 size6 one,6 we6 first6 look6at6some6exa
mples,6and6then6use6mathematical6induction6to6prove6what6we6conjecture6to6be6the6losing6positions.6
A6losing6position6is6one6where6every6move6is6to6a6winning6position,6because6then6the6opponent6
will6win.6 The6point6of6this6exercise6is6to6formulate6a6precise6statement6to6be6proved,6and6then6to6
prove6it.
First,6if6there6are6only6two6heaps6recall6that6they6are6losing6if6and6only6if6the6heaps6are6of6equal6
size.6 If6they6are6of6unequal6size,6then6the6winning6move6is6to6reduce6the6larger6heap6so6that6both
6heaps6have6equal6size.




3

, Consider6three6heaps6of6sizes61,6m,6n,6where6166666m66666n.
≤6We≤6observe6the6following:61,61,6m6is6wi

nning,6by6moving6to61,61,60.6Similarly,61,6m,6m6is6winning,6by6moving6to60,6m,6m.6Next,61,62,636is6
losing6(observed6earlier6in6the6lecture),6and6hence61,62,6n6for6n646is6winning.61,63,6n6is6winning6f
or6any6n636by6moving6to61,63,62.6For61,64,65,6reducing6any6heap6produces6a6winning6position,6so6
≥ ≥
this6is6losing.
The6general6pattern6for6the6losing6positions6thus6seems6to6be:61,6m,6m61,6for6even+ 6numbers6m.6

This6includes6also6the6case6m6=60,6which6we6can6take6as6the6base6case6for6an6induction.6 We6now6
proceed6to6prove6this6formally.
First6we6show6that6if6the6positions6of6the6form61,6m,6n6with6m666666n6are6losing ≤ 6when6m6is6even6an
d6n6=6m61,6then6these6are+6the6only6losing6positions6because6any6other6position61,6m,6n6 with6m6 6 n
6 is6winning.6 Namely,6if6m6 =6n6 then6a6winning6move6from61,6 m,6 m6is6to60,6 m,6 m,6so6we6can6assume6m6

<6n.6 If6m6is6even6then6n6>6m6 6 16(otherwise6we6would6be6in6the6position61,6m,6m6 6 1)6and6so6the6win
+
ning6move6is6to61,6m,6m6 6 1.6If6m6is6odd6then6the6winning6move6is6to61,6m,6m61,6the6same6as6position6
+ +
1,6m61,6m6(this6would6 also6 be6 a6 winning6 move6 from6 1,6m,6m6 so6 there6 the6 winning6 move6 is6 not6 uniqu
e). – −

Second,6we6show6that6any6move6from61,6m,6m6+616with6even6m6is6to6a6winning6position,6using6as6ind
uctive6hypothesis6that61,6mJ,6mJ6+616for6even6mJ6and6mJ6<6m6is6a6losing6position.6The6move6to60,6m
,6m6+616produces6a6winning6position6with6counter-
move6to60,6m,6m.6A6move6to61,6mJ,6m6+616for6mJ6<6m6is6to6a6winning6position6with6the6counter-
move6to61,6mJ,6mJ6+616if6mJ6is6even6and6to61,6mJ,6mJ6−616if6mJ6is6odd.6A6move6to61,6m,6m6is6to6a6winni
ng6position6with6counter-
move6to60,6m,6m.6A6move6to61,6m,6mJ6with6 mJ6<6 m6is6also6to6a6winning6position6with6the6counter-
move6to61,6mJ6−61,6mJ6if6 mJ6is6odd,6and6to61,6mJ6 1,6mJ6if6mJ6is6even6(in6which6case6mJ6 16<6m6because6
m6is6even).6This6concludes6the6induction6proof.
+ +
This6result6is6in6agreement6with6the6theorem6on6Nim6heap6sizes6represented6as6sums6of6powers6of62:
0
6 16 6 m6 6 n6is6losing6if6and6only6if,6except6for62 ,6the6powers6of626making6up6m6and6n6come6in6pairs.6S
∗6 +∗ +∗
o6these6must6be6the6same6powers6of62,6except6for616=620,6which6occurs6in6only6m6or6n,6where6we6have
6assumed6that6n6is6the6larger6number,6so616appears6in6 the6 representation6 of6 n:6 We6 have6 m6 =6 2
a66666
6 b666666 c
2 2
+ + +6 ·6 ·6 · ·6 ·6 ·6 ≥
for6 a6 >6 b6 >6 c6 >66666666 1,6so6 m6
+ + +6 ·6 ·6 ·6 + +
is6 even,6 and,6 with6 the6 same6 a,6b,6c,6.6.6.,6 n6 =6 2a6 6 6 2b6 6 6 2c 16 =6 m6666 1.6 Then
∗16 666666
+6 ∗m66666
+6 ∗n666666
≡60.
∗ 6 The6 following6 is6 an6example6 using6 the6 bit6 representation6 where
m6 =6126(which6determines6the6bit6pattern61100,6which6of6course6depends6on6m):

1 = 0001
12 = 1100
13 = 1101
Nim-sum 0 = 0000

(b) We6use6(a).6Clearly,61,62,636is6losing6as6shown6in6(1.2),6and6because6the6Nim-
sum6of6the6binary6representations601,610,6116is600.6Examples6show6that6any6other6position6is6wi
nning.6The6three6numbers6are6n,6n6 1,6n6 6 2.+6If6n6is6+
even6then6reducing6the6heap6of6size6n626to616cre
ates6the6position6n,6n6 1,616which6is6losing6as6shown6in6(a).6If6n6is6odd,6then6n6 16is6even6and6n666
+ +
26=6 n666166616so6by6the6same6argument,6a6winning6move6is6to6reduce6the6Nim6heap6of6size6n6to616
+ + (6 +6 )6+
(which6only6works6if6n6 >61).




4

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller Testbanknurseproffessor. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $17.99. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

75323 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 14 years now

Start selling
$17.99
  • (0)
  Add to cart