100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Solution Manual for Game Theory Basics 1st Edition By Bernhard von Stengel, ISBN: 9781108843300, All 12 Chapters Covered, Verified Latest Edition $16.49   Add to cart

Exam (elaborations)

Solution Manual for Game Theory Basics 1st Edition By Bernhard von Stengel, ISBN: 9781108843300, All 12 Chapters Covered, Verified Latest Edition

 16 views  1 purchase
  • Course
  • Game Theory Basics By Bernhard von Stengel
  • Institution
  • Game Theory Basics By Bernhard Von Stengel

Solution Manual for Game Theory Basics 1st Edition By Bernhard von Stengel, ISBN: 9781108843300, All 12 Chapters Covered, Verified Latest Edition Solution Manual for Game Theory Basics 1st Edition By Bernhard von Stengel, ISBN: 9781108843300, All 12 Chapters Covered, Verified Latest Edition Test ba...

[Show more]

Preview 4 out of 69  pages

  • October 10, 2024
  • 69
  • 2024/2025
  • Exam (elaborations)
  • Questions & answers
  • game theory basics
book image

Book Title:

Author(s):

  • Edition:
  • ISBN:
  • Edition:
  • Game Theory Basics By Bernhard von Stengel
  • Game Theory Basics By Bernhard von Stengel
avatar-seller
Madprofessor
SOLUTION MANUAL
Game Theory Basics 1st Edition
By Bernhard von Stengel. Chapters 1 - 12




1

,TABLE OF CONTENTS T T T




1 - Nim and Combinatorial Games
T T T T T




2 - Congestion Games
T T T




3 - Games in Strategic Form
T T T T T




4 - Game Trees with Perfect Information
T T T T T T




5 - Expected Utility
T T T




6 - Mixed Equilibrium
T T T




7 - Brouwer’s Fixed-Point Theorem
T T T T




8 - Zero-Sum Games
T T T




9 - Geometry of Equilibria in Bimatrix Games
T T T T T T T




10 - Game Trees with Imperfect Information
T T T T T T




11 - Bargaining
T T




12 - Correlated Equilibrium
T T T




2

,Game Theory Basics
T T




SolutionsT toT Exercises
©T BernhardTvonTStengelT2022

SolutionTtoTExerciseT1.1

(a) LetT≤TbeTdefinedTbyT(1.7).T ToTshowTthatT≤TisTtransitive,TconsiderTx,Ty,TzTwithTxT ≤TyTandTyT≤Tz.TIfT
xT=TyTthenTxT≤Tz,TandTifTyT=TzTthenTalsoTxT≤Tz.TSoTtheTonlyTcaseTleftTisTxT<TyTandTyT <Tz,Twhich
TimpliesT xT <T zTbecauseT<TisTtransitive,TandThenceT xT ≤Tz.

Clearly,T≤TisTreflexiveTbecauseTxT=TxTandTthereforeTxT ≤Tx.
ToTshowTthatTTTTT
≤ isTantisymmetric,TconsiderTxTandTyTwithTxTTTTTyTand
≤ TyTTTTTx.TIf
≤TweThadTxT≠TyT
thenTxT<TyTandTyT<Tx,TandTbyTtransitivityTxT<TxTwhichTcontradictsT(1.38).THenceTxT =T y,TasTreq
uired.T ThisTshowsTthatT≤TisTaTpartialTorder.
Finally,TweTshowT(1.6),TsoTweThaveTtoTshowTthatTxT<TyTimpliesTxTTTyTandT≤ xT≠TyTandTviceTversa.
TLetTxT<Ty,TwhichTimpliesTxTyTbyT(1.7).TIfTweThadTxT=TyTthenTxT<Tx,TcontradictingT(1.38),TsoTwe

TalsoThaveTxT≠Ty.T Conversely,TxTTT yTandTxT≠TyTimplyTbyT(1.7)TxT <T yT orT xT =T yT whereTtheTsecondTc

aseTisTexcluded,ThenceTxT <T y,TasTrequired.
(b) ConsiderTaTpartialTorderTand≤TassumeT(1.6)TasTaTdefinitionTofT<.TToTshowTthatT<TisTtransitive,
TsupposeTxT<Ty,TthatTis,TxTyTandTxT≠Ty,TandTyT<Tz,TthatTis,TyTzTandTyT≠Tz.TBecauseTTTTisTtransitive
≤ ≤
,TxTTTTz.TIfT≤weThadTxT=TzTthen≤
TxTTTTTyTandTyTTTTTxTandThenceTxT=TyTbyTantisymmetryTofTTTT,Twhic
≤ ≤
hTcontradictsT xT ≠T y,TsoTweThaveT xTTTT zT andT xT ≠T z,TthatTis,TxT <T zTbyT(1.6),TasTrequired.
≤ ≤
Also,T<TisTirreflexive,TbecauseTxT<TxTwouldTbyTdefinitionTmeanTxTTTxTandT≤ xT≠Tx,TbutTtheTlatter
TisTnotTtrue.


Finally,TweTshowT(1.7),TsoTweThaveTtoTshowTthatTxT ≤TyTimpliesTxT<TyTorTxT=TyTandTviceTversa,T
givenTthatT<TisTdefinedTbyT(1.6).TLetTxT≤Ty.TThenTifTxT=Ty,TweTareTdone,TotherwiseTxT≠TyTandTt
henTbyTdefinitionTxT<Ty.THence,TxT≤TyTimpliesTxT<TyTorTxT=Ty.TConversely,TsupposeTxT <T yTorTx
T=Ty.T IfTxT <T yTthenTxT ≤TyTbyT(1.6),TandTifTxT=TyTthenTxT ≤T yTbecauseT ≤TisTreflexive.T ThisTcomp
letesTtheTproof.

SolutionTtoTExerciseT1.2

(a) InT analysingT theT gamesT ofT threeT NimT heapsT whereT oneT heapT hasT sizeT one,T weT firstT lookTatTsom
eTexamples,TandTthenTuseTmathematicalTinductionTtoTproveTwhatTweTconjectureTtoTbeTtheTlosingTp
ositions.TATlosingTpositionTisToneTwhereTeveryTmoveTisTtoTaTwinningTposition,TbecauseTthenTt
heTopponentTwillTwin.T TheTpointTofTthisTexerciseTisTtoTformulateTaTpreciseTstatementTtoTbeTpro
ved,TandTthenTtoTproveTit.
First,TifTthereTareTonlyTtwoTheapsTrecallTthatTtheyTareTlosingTifTandTonlyTifTtheTheapsTareTofT
equalTsize.T IfTtheyTareTofTunequalTsize,TthenTtheTwinningTmoveTisTtoTreduceTtheTlargerTheapTs
oTthatTbothTheapsThaveTequalTsize.




3

, ConsiderTthreeTheapsTofTsizesT1,Tm,Tn,TwhereT1TTTTTm≤ TTTTTn.
≤TWeTobserveTtheTfollowing:T1,T1,T
mTisTwinning,TbyTmovingTtoT1,T1,T0.TSimilarly,T1,Tm,TmTisTwinning,TbyTmovingTtoT0,Tm,Tm.TNe
xt,T1,T2,T3TisTlosingT(observedTearlierTinTtheTlecture),TandThenceT1,T2,TnTforTnT4TisTwinning.T1,
T3,TnTisTwinningTforTanyTnT3TbyTmovingTtoT1,T3,T2.TForT1,T4,T5,TreducingTanyTheapTproducesT
≥ ≥
aTwinningTposition,TsoTthisTisTlosing.
TheTgeneralTpatternTforTtheTlosingTpositionsTthusTseemsTtoTbe:T1,Tm,TmT1,TforTeven
+ Tnumbers
Tm.T ThisTincludesTalsoTtheTcaseTmT=T0,TwhichTweTcanTtakeTasTtheTbaseTcaseTforTanTinduction.T

WeTnowTproceedTtoTproveTthisTformally.
FirstTweTshowTthatTifTtheTpositionsTofTtheTformT1,Tm,TnTwithTmTTTTTTnTare ≤ TlosingTwhenTmTisTe
venTandTnT=TmT1,TthenT+ theseTareTtheTonlyTlosingTpositionsTbecauseTanyTotherTpositionT1,Tm,Tn
T withTmT T nT isTwinning.T Namely,TifTmT =TnT thenTaTwinningTmoveTfromT1,Tm,TmTisTtoT0,Tm,Tm,Tso

TweTcanTassumeTmT<Tn.T IfTmTisTevenTthenTnT>TmT T 1T(otherwiseTweTwouldTbeTinTtheTpositionT1,T
+
m,TmT T 1)TandTsoTtheTwinningTmoveTisTtoT1,Tm,TmT T 1.TIfTmTisToddTthenTtheTwinningTmoveTisTto
+ +
T1,Tm,TmT1,TtheTsameTasTpositionT1,TmT1,TmT(thisTwouldT alsoT beT aT winningT moveT fromT 1,Tm,TmT so

T thereT theT winningT moveT isT notT unique).
– −

Second,TweTshowTthatTanyTmoveTfromT1,Tm,TmT+T1TwithTevenTmTisTtoTaTwinningTposition,TusingTa
sTinductiveThypothesisTthatT1,TmJ,TmJT+T1TforTevenTmJTandTmJT<TmTisTaTlosingTposition.TTheTm
oveTtoT0,Tm,TmT+T1TproducesTaTwinningTpositionTwithTcounter-
moveTtoT0,Tm,Tm.TATmoveTtoT1,TmJ,TmT+T1TforTmJT<TmTisTtoTaTwinningTpositionTwithTtheTcounter-
moveTtoT1,TmJ,TmJT+T1TifTmJTisTevenTandTtoT1,TmJ,TmJT−T1TifTmJTisTodd.TATmoveTtoT1,Tm,TmTisTto
TaTwinningTpositionTwithTcounter-

moveTtoT0,Tm,Tm.TATmoveTtoT1,Tm,TmJTwithT mJT<T mTisTalsoTtoTaTwinningTpositionTwithTtheTcounte
r-
moveTtoT1,TmJT−T1,TmJTifT mJTisTodd,TandTtoT1,TmJT 1,TmJTifTmJTisTevenT(inTwhichTcaseTmJT 1T<TmTbe
causeTmTisTeven).TThis+
Tconcludes Tthe Tinduction Tproof. +
ThisTresultTisTinTagreementTwithTtheTtheoremTonTNimTheapTsizesTrepresentedTasTsumsTofTpowersT
ofT2:T 1T T mT ∗T Tn+∗ 0
TisTlosingTifTandTonlyTif,TexceptTforT2 ,TtheTpowersTofT2TmakingTupTmTandTnTcome
+∗
0
TinTpairs.TSoTtheseTmustTbeTtheTsameTpowersTofT2,TexceptTforT1T=T2 ,TwhichToccursTinTonlyTmTorT

n,TwhereTweThaveTassumedTthatTnTisTtheTlargerTnumber,TsoT1TappearsTinTtheTrepresentationTofT n:
T WeT haveT mT =T 2
aTTTTTT2bTTTTTT2c
+ + +T ·T ·T · ·T ·T·T ≥
forT aT >T bT >T cT >TTTTTTTT 1,Ts
+ + + T ·T ·T ·T + +
oT mT isT even,T and,T withT theT sameT a,Tb,Tc,T.T.T.,T nT =T 2aT T T 2bT T T 2c 1T =T mTTTT 1.T Then
1 m
∗T +T ∗ +T ∗ ≡T∗
TTTTTT TTTTT n TTTTTT 0.T The T following T isT an T example T using T the T bit T representation T where

mT =T12T(whichTdeterminesTtheTbitTpatternT1100,TwhichTofTcourseTdependsTonTm):

1 = 0001
12 = 1100
13 = 1101
Nim-sum 0 = 0000

(b) WeTuseT(a).TClearly,T1,T2,T3TisTlosingTasTshownTinT(1.2),TandTbecauseTtheTNim-
sumTofTtheTbinaryTrepresentationsT01,T10,T11TisT00.TExamplesTshowTthatTanyTotherTposition
TisTwinning.TTheTthreeTnumbersTareTn,TnT 1,TnT T 2.TIfTnTisTevenTthenTreducingTtheTheapTofTsizeTn
+ +
T2TtoT1TcreatesTtheTpositionTn,TnT 1,T1TwhichTisTlosingTasTshownTinT(a).TIfTnTisTodd,TthenTnT 1
+ +
TisTevenTandTnTTT2T=T nTTT1TTT1TsoTbyTtheTsameTargument,TaTwinningTmoveTisTtoTreduceTtheT
+ + (T +T )T+
NimTheapTofTsizeTnTtoT1T(whichTonlyTworksTifTnT >T1).




4

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller Madprofessor. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $16.49. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

67096 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 14 years now

Start selling
$16.49  1x  sold
  • (0)
  Add to cart