100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Spiekbrief tentamen 1/2 $3.21   Add to cart

Other

Spiekbrief tentamen 1/2

1 review
 80 views  0 purchase
  • Course
  • Institution
  • Book

Dit is het eerste deel van de spiekbrief. Deze spiekbrief bevat alle nodige theorie, formules en tentamenopgaven.

Preview 1 out of 1  pages

  • January 30, 2020
  • 1
  • 2019/2020
  • Other
  • Unknown

1  review

review-writer-avatar

By: maxgoessens • 2 year ago

avatar-seller
Reliability Exponential
− λt
Weibull
t
Gamma
β P ( A ∪B ) =P ( A )+ P ( B )
R ( t )=P(T ≥ t) R ( t )=e β t β −1 − ( )f ( t )= t γ−1 ∗α−γ∗e −tα P ( A ∪B ) =P ( A )+ P ( B )−P (
T= time to failure
F ( t )=1−R (t)
F ( t )=1−e−λt
λ ( t )= ( ) , R ( t )=e
θ θ Γ ( y)
θ

P ( A ∪B ) =P ( A )+ P ( B )−P ( A
f ( t )= λe− λt
β

() β −1 − t t P ( A ∩B )=P ( A )∗P ( B )
F ( 0 )=0 β t
f ( t )= ( ) e I( ,γ)
θ
1 α P ( A|B )=P( A ∩ B)/ P ( B )
lim F (t )=1 MTTF= , θ θ F ( t )=
λ Γ (γ )
→∞
d −d 2 1 MTTF=θΓ ( 1+ )
1
t
∫ f ( x ) g ' (x )dx=¿ ¿
f ( t )= F ( t )= R ( t )σ = 2 β f ( x ) g ( x ) −∫ g ( x ) f ( x ) dx
a
dt dt λ t
1I ( α , γ )=∫ y
γ−1 −y
t 2 ∗e dy 2 Binominaal
R(t ¿¿ u)=e− λt =u ¿ u
σ =θ ( Γ ( 1+ ) −( Γ ( 1+ ) ) )
2 2
F ( t )=∫ f ( t ' ) dt ' p ( x )= n p x (1− p)n−x E ( X )=
0 t u=
−1
ln ⁡( R)
β
Τ ( x )=( x−1)Γ ( x−1)
β
met y=
t '
0
x ()
∞ λ α n= n!
R ( t )=∫ f ( t ' ) dt '
t
R ( t|T 0 ) =R ( t )
(memoryless)
t =θ (−ln ( u ) )
u
1
β x x ! ( x−n ) !
Data collective t , t ,…, t represents the time of failure of the i unit. The sample
1 2
represents n ind. Values, thus the joint prob: f(t )*f(t )*…*f(t )
n ()
1 2 n
th




P ( a ≤T ≤b )=F ( b )−F ( Failure
a ) modes 1 1
Single censored data: all units have the same test time, test is concluded before all
n t mode=θ (1− ) β for β>1
units have failed (on the left: failures are known to occur before a certain time, on the

R ( t ) =∏ R i ( t ) β right: failures are known to be only after a certain time).
¿ R ( a ) −R ( b ) i=1 ¿ 0 for β ≤ 1
Type I: testing is terminated after a fixed time (t*)
Type II: testing is terminated after a fixed #failures (t ) r
b n
0< β <1 → DFR (Beta = Multiple censored data: testtimes differ among censored units. Censored units are
¿ ∫ f ( t ) dt λ ( t )=∑ λi (t ) shape par.) removed or gone into service at various times from the sample.
Ungrouped complete data: als n aantal failures zijn in een random sample, dan zijn
a i=1 β=1 →CFR (Theta = het aantal surviving units op tijd ti gelijk aan n-i.
R(t ¿¿ u)=u , R(t ¿¿ med)=0.5 ¿ ¿ Two parameter scale/char. life) Grouped complete data: failure times zijn vervangen door intervallen. De individuele
∞ −d β >1→ IFR
R ( t ) ¿ λe−λ(T−t ) observatie is niet beschikbaar, nk zijn het aantal units dat survived op tijdstip tk.
f ( t )= 0

MTTF=E [ T ] =∫ tf ( t ) dt dt Failure modes UGCensoredD product estimator GCensoredD product estimator
0 (0< t 0 ≤T <∞)
k
β t β −1 n+2−i F i=¿ failures ith interval
R ( t i−1 ) HJ =


∫ R(t )dtdata
¿UGComplete Dynamic models
λ ( t )= ∑
i=1 θi θ i
( ) ^
^
R t
n+1 C i=¿ removals( censors) ith
H i=¿ at risk at time t i−1
0 i i
Periodic loads
Als λ ( t ) zijn identiek: ( i )HJ n+ 1−i
R KM ( t i ) =n− =1− Rn =R n
^ =
n n Random loads nβ t β −1
R ( t i−1 ) HJ n+ 2−i
^ H i=H i−1−F i−1−C i−1

F KM ( t i )=1−R
^ ^ ( t i ) = i −k ∞ n
Constant strength k Constant stress s
−s

λ ( t ) =
n
Random stress & strength
θ n eθ−αt −(1−R ) αt ^
μ
() 1 R ( t ) =
n+ 1−i ^
R ( t ) H
'
i =H i −
Ci
, adjusted ¿ risk
n R ( t ) =∑ R Pn (t )=∑ R ( αtR=
Exponential
Dit klopt niet want n/n=1
R=1−exp ( )
μ x n=0
R=exp
μn=0 ( ) ) −n t =e
x R ( t ) =e μ x + μ y
En n (!θ )
y
=
1+ μ x /μ
β Statici HJ models
n+ 2−i i−1 HJ
X is de stress, Y is de strength (capaciteit). De kans dat de stress niet
If censoring
y rather than failure
^
(assuming that censors occur
uniformly)
x
2
Improved by Johnson
B ThreeB parameter ( Takes place at t : R P ¿ ( X ≤ x )i
=F x F i ∫ f x x dx '
( x ) = ( ')
k s groter is dan x:
i Random

[( )]fixed stress and

[( )]
x y '

F Weibull
^ HJ ( t i) =
R=1−exp strenght − R=exp − t 0 is minimumlife ¿
Met getallen oplossen δ =1 if failure occurs at t i ' : the 0 conditional prob of failure
n+1 θ −αtθ β
H
R t =R+(1−R) e
( ) x y
−(
t −t
) μ −μ 0 De kans dat de capaciteit niet groter is dan
y
y:
i
i n+1−i R (yt )=e θ
= k −μx s−μ in '
R HJ ( t i ) =1−
^ 0 ifP censoring occursat t
Normal

− ^
R (
R=Φ n+1
n+1
t )−
( )
σ
^ ( t i )x
R
R=1−Φ
σ λy( t )=
( ) ( )
β
R=Φ( β−12 2 )
t−t
y

√State-dependent
0 σ +σ
x
x

y
^
R t
Static
( Y ≤ y )=F y ( y )=∫ f yi ' (The
=¿
( i )HJreliability: kans dat de stress nietpgroter 0
y ith ) dyinterval
=1−
' given survival to t
Fi
is dan decond strength. . prob of su
t-1




^f HJ ( t i )= i +1 θ θ ln ⁡(m / m ) ^ R
systems
(
Bij0 ) =1
random
with repair
stress en constant strength:
i
H '
t i+1−t i1 ln k 1 s
th
Identical standby units time to k failure



¿
Lognormal
1
R=Φ
s ( ( ))
x m x
R=1−Φ
s y
ln
m ( ( )) (
y
R=Φ d P21y(t )2=−2
s
√ dtx y + s
x
Kolom
KolomR=
λ P
1:
2: t
k
t
f)
i’s((aantal
) +
( x
∫ x R ( t )Grouped
1 r
failure+censor)
Parallel
P
failures)
dx=F
2
i
(t )
Configuration
times
=1− x (k )

n
R
Complete
+
R(1−R
^ (
k= 1− t ) =e
i data ( t )) '(i=0
−F λt

(
i
k−1


i
∗R
( λt )i
^i!i−1, MTTF=
independent ) )
(t i+1−t i )(n+1) d P2 (t ) 0 S
Hoe standby/ switching failure sommen i Hconfiguration
^ uitwerken:
i switching failures
=2 λ P1 ( t )−(r + λ) P^2 (t )∞ n∞iKolom i=1 Standby Combined system f ( t(ti ) , t ) ni−ni +1
with
^ dt R ( t i )= d, ^λk-out-of-n t1:i )=interval
^λ HJ ( t i) = f ( t ) = 1 ( redundancy = i-1 i

MTTF MTTF= System= ∫ R ∫n ( R
t
Kolom ) P(
dt t )
2:
1 dt
(
for t )
#failures^
=−¿
Rtwo (nt F) ( t i+1−tin−
component )∗n (exp
Ri k (1−R) k i
d P3 (t )
R
^ (t ) ( t i +1−t i ) ( n+ 1−i )
n
t dt
=λ P2 ( t )
∀ t , tϵ∞[ 0 , ∞ ) : R (^t )=P
0
0 dt P( k)=
s
Kolom 3: #censorskC i
d∞ 1 ( t ) + P2 (t )∞+ P3 ( t )
P−λ4:2− ttR 1−
i
()
^ MTTF HJ =∑ i Normal plots
λ+ r + x 1 x P −λ t R (dtt i+1
Kolom N= ( #at
) total ^)= risk H i pe)n−(λ
(opt(icomponents
#components
)tijdstip λ 1−n P 1 ( tλ ) )t−λdt 2
t i ( tλ+r x2t dat ¿ ¿1+
¿) :∫ De+ ekans
^
f dt
( ei ) Kolom
x t +¿ ∫ e 1
K= working dt−¿ 2
∫ i needed i+1
I¿
2


i=1 n t−u P1 ( t )= e = het system zich = t in ' toestand

( )
1 2

F ( t )=Φ =Φ ( z )systems − 0 d0t 5:
−t adjusted n #risks
0 (t H −t )∗n
2
σ
Standby x 1−x 2 bevindt x 1−x 2 i+1P ( t )∑ i=λ P ( ti+1
2 1 ), )if−λ
i i
1 P3(t )
n
( t i− ^ MTTF ) dti=2 R 3=
ofP(k p
2 d P1 ( t ) Alle i’s definiëren: i=1 dan..,Kolom k−1 dan… s (prob
6: n −n survive )
exponential:
i t i +t i+1
s HJ =∑ The inverse function can be written as
=−¿ ∀ t , tϵ [ 0 ,^∞
MTTF= ) : P ( t )∑+ P t´ ( t ) +i
k=x P i
( t
+1
) + ,Pt´ = ( t ) =1
n−1 tP dt = tWeibull 2 λ 2 λ 1 2 i n 3 ^
R i4
ex t − e x tLoad sharing i=0system n n i −λkt 2
Kolom 7: Reliability
i=1
i −μ2 ( t )= i μplots 1 2
−1
z i=Φ [ F (t ) ] =Markov
dσP22-good
1: 1-good,
analysis x 1−
) σln σ
( t2-good
−x 2 1
[ =
x 1−x
]()t β
2
S2=∑
d k−1
P1t(´2ti )=−(λ
n R
( i k=x
Serial s configuratione
−n = ∑ i+ 1 ) k
1+ λ −of2)^ P1 ( t ) 2 1
MTTF
()
(1−e−λt )
Which is linear in t. Plot ( t i , F
2: 1-fail,^ ( t i )= λ 1−F
P ( t
) 1 x12 x 2t 2 x1 x i=0 ) (
−λt ) P θ( t ) dt
R = reliability
n
1
n
component

P3dt
3: 1-good, 2-fail
( t2-fail 1e − ed t R t ∏ ) −λR+¿ i ( t ) ( independ
) =1+ 1 2
Least-squares:

exponentially distributed:
4: 1-fail,
Time of the kth when T is Serial: R ( t ) =P 1 ( t ) 2
d P3 (st ) −¿1P1−F
Parallel: R p =
i


(
ln ln
t )λ=¿
x −x
[ ]
=β x 1−x
( t ) − λ P( t( t)) P ( t ) =e ¿
1 1
ln t−β
2
3
dt
d 2
P
lnθ
1
2 ( t )=λ 1 P1 ( ti=1
−¿¿
S ( ) =

Ri ( t ) =e− λ t (if+¿exponential)
2
P (t ) ¿

i
2




k
dt 1
Plot 2 2 P ( t ) =λ 2 P1 ( t ) −λ
P (t ) ¿ 3


Y K =∑ T i , x , x = [
P1 ( t ) + P2 2( t ) + P3 ( t )
1 2 − ( 3 λ−r ) ± √ 1
λ + 6 λr+ dt r 1]
MTTF=
1 1
, MTTF
1

f y ( t )=
i =1
λ k k−1 −λtP1 ( t ) + P2 ( t ) + P3 1( t ) + P
t e P2 ( t ) =
dR ( t )=1−P λ
lnt i ,λln ln

+ λ
−¿−λ
( ¿ ¿
1−
x
¿
4 ( tF
1
^)=1
2 x t
[
( t i ) werk doen en fandersom
λ
x
+ ¿=aangepaste
2
])
Normal
Als 1 kapot gaat moet 2 meerλ

( t ) =
x t faalintensiteit ¿
distribution



√ 2
1
π σ
e
(IFR)
−1
2
¿¿
s= n


Τ (k ) P1 ( t )=−( 3λ1 + λ 2x) P
Or 1 Weibull 2( t ) =
paper ( e −
t1i (,tF) ( t i ) ) x −x −( λ + λ ) t
^ 1
2
e 1 i=1
Lognormal plots
dt −x ∞ −1
1 1 k
1 2
P1 ( t )=e
1 2 1
12
¿¿
1 λR1 ( t )= ∫ e2 ¿
z=Φ−1 [ F ( t ) ] = ln ( t )− ln ( t med )
s
plot ( ln t i , z i ) lognormal paper or paper
s
∫ t
E [ Y K ]=
n
dt=
t n+1λ
for n≠
d
dt
1
RP ( t2)=P
( t )=λ
^
1 ( t1)P
β=
+lnP(ln
1 t2)(−λ t 1−F [
) +2PP3 2((t(tt))=e )
−λ t
+ ]
λ1 + λ−¿−
P2 ( t )= z=( 2
1
λ
¿Tλ¿−μ
√2 π σ t
1
2
2


n+1 d ln t−lnPθ( t ) λ 1+ λ2−λ +¿ )
P ( t ) =λ
Exponential P ( t
plots ) −λ σ 2 ¿¿¿
( ti , F^ ( ti ) ) dt dt 3
12 1 λ11 3


∫ =ln t MTTF= −ln λ+
− ( λ +[ 1−F )t 1 ]=ln 1 =λt F ( t )=P ( T ≤ t )=Φ( t −μ )
( t ) −¿−λ 2 2

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller AnneBannink. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $3.21. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

67474 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 14 years now

Start selling
$3.21
  • (1)
  Add to cart