100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Samenvatting econometrie (deel 1) $7.06   Add to cart

Summary

Samenvatting econometrie (deel 1)

1 review
 272 views  0 purchase
  • Course
  • Institution
  • Book

Deze samenvatting bevat H1-H8. Zowel het boek, als slides, als notities vanuit de les zijn verwerkt in deze samenvatting.

Preview 3 out of 21  pages

  • No
  • H1, h2, h3, h4, h5, h6, h7, h8
  • February 3, 2020
  • 21
  • 2018/2019
  • Summary

1  review

review-writer-avatar

By: mariedebode • 1 year ago

avatar-seller
Econometrie voor bedrijfseconomen
HOOFDSTUK 1: Economische vraagstukken en data
1. Wat is econometrie?
 Modellen voor economische fenomenen opstellen
 Opletten voor causaal verband (oorzaak-gevolg)  geluk!!
- Zorgen dat alle variabelen die verband kunnen veroorzaken mee in het model zitten
- Vb: onveilige seks prostitutie  te verklaren variabele = prijs (andere variabelen = leeftijd…)

2. Economische data
2.1 Hoe wordt economische data gegenereerd?
1) Experimentele data  gegenereerd via experiment vb: invloed bemesting op tomaten
- Voordeel: oorzaak-gevolg
- Nadelen:
 Vaak slechts een nabootsing van de werkelijkheid
Vb: onderzoek naar belastingontduiking (zie artikel online)
 Niet altijd mogelijk (praktisch, ethisch…)  zeker voor economische/sociologische
Vb: effect van extra jaar studeren op loon  dwingen om 1j extra te studeren?
 pseudo-experimenten = experiment nabootsen (gelijkaardige omstandigheden)
2) Niet-experimentele data (meest gebruikt)
- Surveys, landendata… vb: Labour force survey
- Voordeel: vaak grote representatieve datasets
- Nadeel: opletten met oorzaak-gevolg
 technieken van betrouwbaarheid  zoveel mogelijke controlevariabelen in model

2.2 Types van economische data
 Data kan op verschillende niveaus verzameld worden
- Micro: personen, huishoudens, bedrijven… (via enquêtes)
Vb: effect opwaarderen buurt op prijs?  gegevens = huizen
- Macro: gemeenten, landen (geaggregeerde gegevens)
Vb: gemiddelde huur huis in ≠ gemeentes?
 Kwantitatief of kwalitatief?
- Kwantitatief: te verklaren (afhankelijke) variabele
- Kwantitatief + kwalitatief: verklarende (onafhankelijke) variabele
 Vast tijdstip of evolutie?
- Cross-sectionele data: data over verschillende entiteiten voor 1 bepaalde tijdsperiode
 doorsnede op 1 moment vb: hoeveel kost een huis NU?
- Tijdreeksdata: data over 1 bepaalde entiteit maar van verschillende tijdsperiodes
- Paneldata (longitudinale): data over ≠ entiteiten + elk geobserveerd voor  2 tijdsperiodes
 combinatie van vorige 2 technieken (complex)

HOOFDSTUK 2 & 3: Herhaling kansrekenen en statistiek
1. The California Test Score Data
1.1 Probleem
 Probleemstelling: effect op examenresultaten van  vd klasgrootte met 1 student?
- n = 420 schooldistricten in California
- Variabelen: testscores van 5e graad en student-teacher ratio (STR)
- Macro-niveau  gemiddelde per district
 Hebben districten met kleinere klassen hogere testscores?  spreidingsdiagram
1

, - Verklarende variabele = STR
- STR  = testscore   negatief verband
 Is dit een causaal verband?
 andere variabelen/verklaringen vb: rijkere districten = meer middelen

1.2 Verkennende analyses
 Kwantitatief bewijs dat districten met lagere STR, hogere testscores hebben?
1) Schatting: vergelijk gemiddelde testscores bij districten met lagere STR met deze bij hogere
- Schatting van ∆=μklein−μ groot = verschil tss de groepsgemiddelden
- μklein−μ groot =7,4
2) Toetsen van hypothesen: test H0 dat de gem testscores in de 2 types districten dezelfde zijn
- Toetsen tegen de alternatieve hypothese dat ze verschillen
- H 0 : μklein =μ groot vs . H a :μ klein ≠ μ groot
ý k − ý g
t= =4,0480
s 2k s2g  P ( T ≥ 4,0480 )=0,000063  H 0 verwerpen
- Teststatistiek:
√ +
n k ng
3) Betrouwbaarheidsintervallen: bereken een interval voor het verschil in de gem testscore
- ý k − ý g ±1,96 SE( Ý ¿¿ k−Ý g)=[3,81; 10,99]¿
- 0 ligt niet in het BI  H 0 verwerpen
 Besluit: we hebben voldoende sterk bewijs tegen de nulhypothese om deze te verwerpen
 de testscores van districten met lagere STR verschillen significant van deze bij hogere STR

HOOFDSTUK 4: Enkelvoudige lineaire regressie
1. Het lineair regressiemodel
1.1 Het enkelvoudig lineair regressiemodel
 Vb: prijs appartement in groot-Leuven  vermoeden van positief lineair verband tss prijs en opp
 Y = prijs in euro, X = oppervlakte in m2
 Y = β0 + β 1 X !!MAAR: het verband is niet perfect  foutenterm u
- We hebben n observaties: ( X i , Y i ) ,i=1 ,… , n
- Y i=β 0 + β 1 X i+ ui
 Algemeen model
- Y = de afhankelijke (te verklaren) variabele en X = de onafhankelijke (verklarende) variabele
- β 0 = intercept en β 1 = helling
- ui = de foutenterm (error term)  bevat alle andere variabelen dan X met invloed op Y
 bevat ook alle andere fouten (meetfouten, toeval…)

1.2 Correlatie
Spreidingsdiagram
 Nagaan of er een lineair (of ander) verband is tussen X en Y?  spreidingsdiagram
= grafische voorstelling van de koppels gegevens (x1, y1), (x2, y2),..., (xn, yn)
 Deze koppels vormen een puntenwolk waar een bep (lineair) patroon in te vinden is

Steekproefcovariantie
n
1
 Covariantie = stijgend of dalend verband?  s x, y = ∑ ( x −x́ ) ( y i− ý ) !!niet dimensieloos
n−1 i=1 i
 Positieve bijdrage
- x i> x́ en y i > ý  +¿+ ¿+¿
- x i< x́ en y i < ý  −¿−¿+¿
 Negatieve bijdrage
- x i< x́ en y i > ý  −¿+¿−¿
2

, - x i> x́ en y i < ý  +¿−¿−¿

Steekproefcorrelatie
 Correlatie: zin/richting en sterkte van het lineair verband (cov meet enkel richting)
sx , y
 Formule: r x , y = !!dimensieloos = correlatie onafh van gebruikte eenheid
sx s y
 Eigenschappen
r x , y =s x−x́ y− ´y
- Correlatie = covariantie van gestandaardiseerde gegevens  ,
sx sy
- Dus eenheden worden eruit gehaald  correlatie = dimensieloos ( μ=0 en σ =1)
 Interpretatie: correlatie meet richting en sterkte vd lineaire samenhang tss 2 kwantitatieve variab
- Richting via het teken van de correlatie
 Positief (stijgend) verband  r > 0
 Negatief (dalend) verband  r < 0
- Sterkte via de grootte van de correlatie: -1 ≤ r ≤ 1
 hoe dichter bij -1 of 1, hoe sterker het lineaire verband (hoe dichter bij 0, hoe zwakker)
 r = 1: perfect stijgend lineair verband (punten liggen perfect op stijgende rechte)
 r = -1: perfect dalend lineair verband tss x en y
 r = 0: totale afwezigheid van een lineair verband tss x en y
 Opmerkingen
- Correlatie verandert niet bij een lineaire transformatie van x of y
- Correlatie meet enkel de sterkte vh lineaire verband (er kan mss wel een ander verband zijn)
- rx,y = ry,x  maakt niet uit welke de ‘te verklaren’ en welke de ‘verklarende’ variabele is
- x en y moeten kwantitatieve variabelen zijn
- De correlatie is niet resistent (gevoelig voor uitschieters)  tekening maken!!

Populatiecovariantie en -correlatie
 Eigenschappen + interpretatie zijn analoog aan die van steekproef-
 X en Y zijn ongecorreleerd als corr(X, Y) = 0 (geen lineair verband)
- X en Y onafhankelijk = X en Y ook ongecorreleerd (geen verband)
- X en Y ongecorreleerd ≠ X en Y ook onafhankelijk

2. Schatten van de regressieparameters
2.1 Kleinste kwadraten criterium
 Model: Y i=β 0 + β 1 X i+ ui  β 0 en β1 geschat op basis van een steekproef




 ^β 0 en ^β1 bepaald zodat de rechte ^β 0 + ^β 1 X i zo goed mogelijk bij de puntenwolk aansluit
- Zorgen dat verschil tussen theoretische en geschatte rechte zo klein mogelijk is
- Verschil = residu (fout op schatting): u^ i=Y i−Y ^ i=Y i −( ^β 0 + ^β 1 X i)
- Som moet zo klein mog zijn  MAAR: + en – heft elkaar op?
 daarom som van kwadraten zo klein mogelijk maken
- Totale kwadratische afwijking minimaliseren  ^β 0 en ^β1 zodat
n n n
2 2 2
 min ∑ u^ i =∑ ( Y i−Y^ i ) =∑ ( Y i− ^β 0− ^β 1 X i)
i=1 i=1 i=1
 Kleinste-kwadraten criterium
∑( X i − X́ )( Y i −Ý ) S XY SY
- ^β 1= = =R
∑ ( X i − X́ ) 2
S
2
X
SX
 Voorwaarde: S X ≠ 0

3

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller inezvandezande. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $7.06. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

64438 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 14 years now

Start selling
$7.06
  • (1)
  Add to cart