100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Samenvatting fysiotechniek

Beoordeling
-
Verkocht
1
Pagina's
24
Geüpload op
29-10-2024
Geschreven in
2023/2024

Samenvatting van de cursus van fysiotechniek, 1ste master Revalidatiewetenschappen en kinesitherapie, UHasselt.

Instelling
Vak










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Studie
Vak

Documentinformatie

Geüpload op
29 oktober 2024
Aantal pagina's
24
Geschreven in
2023/2024
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

FYSIOTECHNIEK – SAMENVATTING
HOOFDSTUK I – Algemene introducerende concepten
De positie van elektrotherapie binnen kinesitherapie
Meestal worden EPA (electrophysical agents) als toevoeging op een andere therapie gebruikt. Voor zowel
pijncontrole als neuromusculaire behandeling kan elektrotherapie een complementaire techniek zijn om andere
behandelingen te faciliteren.

EPA’s hebben een direct invloed op lichaamsfuncties en structuren, hierdoor zullen ook de activiteiten en
participatie indirect beïnvloedt worden.

Elektrotherapeutische parameters
Elektrische stroom types
Verschillende soorten stroom (current):

- Direct currents
o Ononderbroken, unidirectionele stroom van elektronen
o ‘Galvanic currrents’ bij constante intensiteit
- Alternating currents
o Ononderbroken, bidirectionele stroom van elektronen
- Pulsed currents
o Onderbroken stroom van elektronen, uni- of bidirectioneel

 Puls: meest gebruikte stroomtype bij elektrotherapie

- Monofasisch (unidirectional current flow)
- Bifasisch (bidirectional current flow)
o Identiek (symmetrische puls)
o Niet-identiek (asymmetrische puls)


Stimulatie parameters van pulsstroom
Pulstype:

 MET (microcurrent electrical therapy): monofasische pulsen
 TENS (transcutaneous electrical current stimulation): bifasische pulsen, symmetrisch of asymmetrisch


Fasevorm:

In cutane perceptie is de vorm van de fase amper opmerkbaar. Dit komt door filtering van de huid en de
subcutane lagen, waardoor de ‘effectieve’ stroom een meer gebogen vorm zal hebben in het target gebied, los
van de initiële puls vorm.

In bifasische asymmetrische pulsstroom kan er wel een duidelijk verschil gevoeld worden onder de twee
elektroden.

Bij monofasische stroomtypes is er een kans op verbranding van de huid door de graduele opbouw van hitte
(weerstands-gerelateerde oorzaak) of etching (chemische oorzaak). Bij MET worden er daarom heel kleine
stroomintensiteiten gebruikt zodat dit risico heel klein is.

,Intensiteit:

Intensiteit/kracht/magnitude van de elektrische stroom  Ampère (A)
TENS: mA
MET: µA


Faseduur en pulsduur:

Faseduur: uitgedrukt in ms of µs, een verschil van 10µ kan al waarneembaar zijn
Monofasisch  faseduur = pulsduur
Bifasisch  totale pulsduur = som van de 2 faseduren

De instelling van faseduur is een belangrijke parameter voor de selectieve stimulatie van dikke zenuwvezels (zie
verder).

TENS: <500µs
MET: 200-800ms

Elektrische lading (charge, Coulomb (C)) = intensiteit x pulsduur
 Geeft een indicatie voor de totale energiedosis gegeven aan het weefsel per puls
 High-energetic of low-energetic


Interpuls interval, interfase interval en periode

 Interpuls interval: de pauze tussen 2 pulsen
 Periode: pulsduur + interpuls interval
 Interfase interval (intrapuls interval): de pauze tussen de 2 fases van een puls (bifasische pulsen, sommige
toestellen)


Frequentie:

 Frequentie: aantal periodes per seconde (Hertz, Hz)

De huidimpedantie neemt af met toenemende frequentie, wat resulteert in minder tegenstand van stroom
tijdens huidpenetratie.

Optimale frequentie voor het stimuleren van dikke zenuwvezels = 80 Hz
(wanneer de intensiteit hoog genoeg is om AP op te roepen, zal een hogere frequentie leiden tot temporele
summatie)

Wanneer een constante frequentie voor een lange tijd gebruikt wordt  neurale adaptatie  vermijden door
pulsen te geven in bursts


Behandeltijd en behandelfrequentie:

Behandeltijd = totale tijd stimulatie (min, u)
Behandelfrequentie = aantal behandelingen over een bepaalde tijd (aantal/dag, aantal/week)


Constant current vs constant voltage:

Huidimpedantie (Z) kan wisselen doorheen de tijd  het toestel houdt ofwel de stroomintensiteit (I) of de
spanning (V) constant, door de andere parameter aan te passen

Wet van Ohm: V = I x Z

, CC (leidt tot verhoging V bij verhoging Z)  gebruikt bij elektroden in gefixeerde positie, want de totale stroom
is gerelateerd aan het effect van de behandeling

CV (leidt tot verhoging I bij verhoging Z)  gebruikt wanneer de elektroden over de huid worden bewogen,
bijvoorbeeld bij het zoeken van het motorisch punt


Modulatie:

Intensiteit, faseduur of frequentie kunnen doorheen de behandeling variëren. Hoe groter de range van de van
modulatie, hoe duidelijker de verschillen voelbaar zullen zijn en hoe kleiner het risico op neurale adaptatie.



Elektrodes
 Type elektrode: carbon met/zonder spons, zelfklevend, pen (probe)
 Plaatsing elektrode: afhankelijk van het doel van stimulatie (zie verder)

Het contactoppervlak tussen de huid en de elektrode bepaalt de stroomdensiteit (kleiner oppervlak, meer
sensatie).

Bij monofasische en bifasische asymmetrische stroom rekening houden met polariteit  kathode = actieve
elektrode, plaatsen over target locatie



Sensaties door parametermanipulatie
(Practicum 1)



Actiepotentiaal generators bij elektrische stimulatie
Het actiepotentiaal
Natrium- (Na+) en kaliumionen (K+) zijn in rust ongelijk verdeeld rond het celmembraan  chemische gradiënt

Natrium meer buiten de cel, kalium meer in de cel  binnen de cel meer negatieve lading  elektrochemische
gradiënt*

Rust transmembraan potentiaal:

- Zenuwvezels: -70mV
- Spiervezels: -90mV

Ionen kunnen door het celmembraan bewegen afhankelijk van hun elektrochemische gradiënt* via passieve-,
ligand-, mechanische- of voltage-gated ionkanalen.
 Voltage-gated ionkanalen openen enkel wanneer het transmembraan potentiaal een bepaalde waarde
bereikt (door bewegen van ionen over het celmembraan, als gevolg van chemische of elektrische stimuli)
 Het transmembraan potentiaal wordt minder negatief
 Bij -55mV openen de voltage-gated natrium kanalen
 Na+ komt de cel binnen
 = Start actiepotentiaal
 Door de instroom wordt het transmembraan potentiaal nog minder negatief (= depolarisatie) tot +30mV
 positief potentiaal leidt tot sluiting natriumkanalen
$13.50
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
v165m

Maak kennis met de verkoper

Seller avatar
v165m Universiteit Hasselt
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
2
Lid sinds
1 jaar
Aantal volgers
0
Documenten
4
Laatst verkocht
2 maanden geleden

0.0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen