Summary Essential Cheat Sheet: Financial Markets and Institutions
3 purchases
Course
Financial Markets & Institutions (E_FIN_FMI)
Institution
Vrije Universiteit Amsterdam (VU)
Master Financial Markets and Institutions with the Ultimate Cheat Sheet!
Get ahead in Financial Markets and Institutions with a cheat sheet designed to make studying easier and more effective. Packed with summaries of key concepts and essential formulas, this guide condenses the most important t...
Essential Cheat Sheet: Financial Contents
WEEK 1 - Yield curve and fixed income instruments ................................................ 2
Markets and Institutions WEEK 2 - Monetary policy, inflation, yield curve inversion ...................................... 5
WEEK 3 - FX markets: instruments, theoretical parities, and their violation ........... 7
WEEK 4 – Banking, regulation and market liquidity ................................................. 9
Author: Linh Nguyen WEEK 5 – Asset management ................................................................................ 10
Study year: 2023 – 2024
Course name: Financial Markets and Institutions
Vrije Universiteit Amsterdam
, 2
WEEK 1 - Yield curve and fixed income instruments Continuous compounding:
Yield curve: Collection of Rf interest rates for different maturities {𝑟(0, 𝑇)} 𝑇 𝑒 −(𝑇2−𝑇1)×𝑓(0,𝑇1,𝑇2) = 𝐹(0, 𝑇1 , 𝑇2 ) = e−𝑟(0,𝑇2)×𝑇2+𝑟(0,𝑇1)×𝑇1
• Upward sloping: Normal curve. S/T IR < L/T IR. Investors demand higher return for holding L/T − ln 𝐹(0, 𝑇1 , 𝑇2 )
securities. 𝑓(0, 𝑇1 , 𝑇2 ) =
𝑇2 − 𝑇1
• Flat: Investors are indifferent.
• Inverted: S/T IR > L/T IR. Signs of recession or that S/T rates are expected to go lower. 2. Basics of interest-rate risk management
Yield to maturity (YTM): the annual expected return of a bond if held until maturity, also referred to P: price of financial instruments; r: interest rates
as book yield. If IRs change by Δ𝑟, then price changes by Δ𝑃. The relationship (absolute) is
𝑁 1 ′′
𝑦 −𝑛𝑇𝑖 Δ𝑃 ≈ 𝑃𝑟′ ∗ Δ𝑟 + 𝑃𝑟𝑟 ∗ (Δ𝑟)2
𝑃(𝑡, 𝑇) = ∑ 𝐶𝐹𝑖 (1 + ) 2
𝑛 ′ ′′
𝑖=1 𝑃𝑟 and 𝑃𝑟 are the first and second derivative of P w.r.t. r.
Bootstrapping the curve: Constructing a (zero coupon) yield curve from coupon bearing products The relationship (relative, %) is
like coupon bonds or swaps, FRAs. Δ𝑃 1 1 1 ′′
Example: IR r1(0,1) associated with discount factor ≈ − (− 𝑃𝑟′ ) Δ𝑟 + ( 𝑃𝑟𝑟 ) (Δ𝑟)2
𝑃 𝑃 2 𝑃
1 1 Δ𝑃 1
𝑍(0,1) = ⇒ 𝑟1 (0,1) = − 1 ≈ 0.0417 = 4.17% = 417𝑏. 𝑝. = −𝐷Δ𝑟 + 𝐶(Δ𝑟)2
1 + 𝑟1 (0,1) 𝑍(0,1) 𝑃 2
1
Duration: 𝐷 = − 𝑃𝑟′ (minus 1 over P times first derivative of P w.r.t. r)
𝑃
N-times compounded IR, 𝒓𝒏 (𝟎, 𝑻𝒊 ) Continuous compounding IR 𝒓(𝟎, 𝑻𝒊 ): 𝒏 = ∞ 1′′ (1 over P times second derivative of P w.r.t. r)
Convexity: 𝐶 = 𝑃𝑟𝑟
−𝑛𝑇𝑖 𝑃
𝑟𝑛 (0, 𝑇𝑖 )
𝑍(0, 𝑇𝑖 ) = (1 + ) 𝑍(0, 𝑇𝑖 ) = 𝑒 −𝑟(0,𝑇𝑖)𝑇𝑖
𝑛 DURATION AND CONVEXITY OF ZERO-COUPON BOND
1 ln 𝑍(0, 𝑇)
𝑟𝑛 (0, 𝑇) = 𝑛 (𝑍(0, 𝑇)−𝑛𝑇 − 1) 𝑟(0, 𝑇) = − Time-t price of zero-coupon bond, maturity T is
𝑇
𝒁(𝒕, 𝑻) = 𝑒 −𝑟(𝑡,𝑇)(𝑇−𝑡)
𝑟(𝑡, 𝑇) is continuously compounded interest rate.
Discount curve: A collection of zero-coupon bond prices {𝑍(0, 𝑇)] 𝑇 for different maturities
Duration of zero-coupon bond = time to maturity D = T – t
Duration measures the sensitivity of prices to parallel shifts of the yield curve.
Forward rate agreement (FRA): noncash contract between two counterparties
Convexity of zero-coupon bond = time to maturity squared. C = (T – t )2
• Time 0, Notional amount N and the forward rate 𝑓𝑛 (0, 𝑇1 , 𝑇2 ) are agreed
• Time 𝑇1 < 𝑇2 , 𝑟𝑛 (𝑇1 , 𝑇2 ) is revealed.
DURATION AND CONVEXITY OF COUPON BOND (CP BOND)
• Time T2:
CP bond price P(t,T), CP payment times Ti : i = 1, 2, …, n; Tn = T and payments CFi
o Buyer needs to pay 𝑁 ∗ Δ𝑓𝑛 (0, 𝑇1 , 𝑇2 )
Or Time-t price of CP bond, maturity T
o Seller needs to give 𝑁 ∗ Δ𝑟𝑛 (𝑇1 , 𝑇2 ) 𝑛 𝑛
1 𝑃(𝑡, 𝑇𝑖 ) = ∑ 𝐶𝐹𝑖 ∗ 𝑍(𝑡, 𝑇𝑖 ) = ∑ 𝐶𝐹𝑖 𝑒 −𝑟(𝑡,𝑇𝑖 )(𝑇𝑖 −𝑡)
Δ≡
𝑛 𝑖=1 𝑖=1
• So, the parties exchange the dollar difference between two rates at maturity T2: 𝑛
𝑦 −𝑛𝑇𝑖
𝑁 ∗ Δ[𝑟𝑛 (𝑇1 , 𝑇2 ) − 𝑓𝑛 (0, 𝑇1 , 𝑇2 )] 𝑃(𝑡, 𝑇𝑖 ) = ∑ 𝐶𝐹𝑖 ∗ (1 + )
𝑛
To ensure that the FRA costs nothing at inception, forward rate 𝑓𝑛 (0, 𝑇1 , 𝑇2 ) must be set as: 𝑖=1
where n = number of cashflow per year; y = YTM
𝑛(𝑇2 −𝑇1 ) 𝑍(0, 𝑇1 )
𝑓𝑛 (0, 𝑇1 , 𝑇2 ) = [−1 + √ ]∗𝑛 Equals to sum of all CF at time i times time-t price of ZC bond, maturity time i. Z here is also the
𝑍(0, 𝑇2 ) discount factor at time t.
𝑓𝑛 (0,0, 𝑇) ≡ 𝑟𝑛 (0, 𝑇) If there is a parallel shift in the continuously compounded yield curve, such that regardless of
Forward discount factor: maturity, rates change by the same amount: Δ𝑟(𝑡, 𝑇𝑖 ) = Δ𝑟 ∀𝑖 then
−𝑛(𝑇2 −𝑇1 ) 𝑛 𝑛
𝑓𝑛 (0, 𝑇1 , 𝑇2 ) 𝑍(0, 𝑇2 ) 𝐶𝐹𝑖 𝑍(𝑡, 𝑇𝑖 )
𝐹(0, 𝑇1 , 𝑇2 ) = (1 + ) = 𝐷 = ∑ 𝑤𝑖 (𝑇𝑖 − 𝑡) = ∑ (𝑇𝑖 − 𝑡)
𝑛 𝑍(0, 𝑇1 ) 𝑃
𝑖=1 𝑖=1
The benefits of buying summaries with Stuvia:
Guaranteed quality through customer reviews
Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.
Quick and easy check-out
You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.
Focus on what matters
Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!
Frequently asked questions
What do I get when I buy this document?
You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.
Satisfaction guarantee: how does it work?
Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.
Who am I buying these notes from?
Stuvia is a marketplace, so you are not buying this document from us, but from seller linhnguyen5. Stuvia facilitates payment to the seller.
Will I be stuck with a subscription?
No, you only buy these notes for $6.43. You're not tied to anything after your purchase.