, Solutions Manual
Foundations of Mathematical Economics
Michael Carter
, ⃝ c 2001 Michael Carter
trtrtr tr tr
Solutions for Foundations of Mathematical Economic tr tr tr tr tr All rights reserved tr tr
s
Chapter 1: Sets and Spaces t r t r t r t r
1.1
{1, 3, 5, 7 . . . }or {� ∈ � : � is odd }
tr tr tr tr tr tr tr t r tr tr tr t r tr tr t r tr
1.2 Every � ∈ � also belongs to �. Every �∈ t r t r t r t r t r t r t r
� also belongs to �. Hence �, � haveprecisely the same elements.
t r tr tr t r tr t r tr t r rt tr tr tr
1.3 Examples of finite sets are tr tr tr tr
∙ the letters of the alphabet {A, B, C, . . . , Z }
t r tr tr t r tr r
t t r t r t r tr t r tr
∙ the set of consumers in an economy tr tr tr tr tr tr
∙ the set of goods in an economy tr tr tr tr tr tr
∙ the set of players in a game tr tr tr tr tr tr
.Examples of infinite sets are
rt tr tr tr tr
∙ the real numbers ℜ tr tr tr
∙ the natural numbers � tr tr tr
∙ the set of all possible colors tr tr tr tr tr
∙ the set of possible prices of copper on the world market
t r tr tr tr tr tr tr tr t r tr
∙ the set of possible temperatures of liquid water.
t r t r t r t r t r t r t r
1.4 � = {1, 2, 3, 4, 5, 6 }, � = {2, 4, 6 }.
tr tr tr r
t tr tr tr tr tr tr tr tr tr r
t tr tr tr
1.5 The player set is � = {Jenny, Chris }. Their action spaces are
t r t r t r t r t r tr r
t tr tr tr t r t r tr
�� = {Rock, Scissors, Paper }
t r tr r
t tr tr tr � = Jenny, Chris
tr tr tr
1.6 The set of players is � ={ 1, 2, .. . , �} . The strategy space of each player is the
t r tr tr tr t r t r t r tr tr t r tr t r tr tr tr tr tr tr t
rset of feasible outputs
tr tr tr
�� = {�� ∈ ℜ + : �� ≤ �� }
tr tr r
t tr r
t tr tr tr r
t tr
where �� is the output of dam �. tr trtr trtr tr tr tr tr
1.7 The player set is � = {1, 2, 3 }. There are 23 = 8 coalitions, namely
t r tr t r t r t r tr tr tr tr t r tr tr tr tr tr
� (�) = {∅ , {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}
tr t r t r tr tr tr tr tr tr tr tr tr tr tr tr
10
There are 2 tr tr t r coalitions in a ten player game. tr tr tr tr tr
1.8 Assume that � ∈ (� ∪ �)� . That is � ∈/ � ∪ �. This implies � ∈/ � and � ∈/ �, or � ∈
trt r trtr trtr trtr tr tr r
t tr trtrtr trtr trtr trtr trtr tr r
t tr trtrtr trtr trtr trtr trtr trtr trtr trtr trtr tr tr tr tr tr
�� and � ∈ � �. Consequently, � ∈ �� ∩ � �. Conversely, assume � ∈ �� ∩ � �. This implies
tr t r tr tr tr t r t r tr tr tr tr tr t r t r t r tr tr tr tr tr tr trtr trt
that � ∈ � � and � ∈ �� . Consequently �∈/ � and �∈/ � and therefore
r trtr tr tr trtr trtr tr tr tr trtrtr trtr tr trtr trtr trtr tr trtr trt r trtr
�∈/ � ∪ �. This implies that � ∈ (� ∪ �)� . The other identity is proved similarly.
tr tr r
t tr tr tr trtr tr tr r
t tr r
t tr tr tr tr tr tr tr
1.9
∪
� =� tr tr
�∈�
∩
� =∅ tr tr
�∈�
1
, ⃝ c 2001 Michael Carter
trtrtr tr tr
Solutions for Foundations of Mathematical Economic tr tr tr tr tr All rights reserved tr tr
s
�2
1
�1
-1 0 1
-1
2 2
Figure 1.1: The relation {(�, �) : � + � = 1 }
t r tr t r t r r
t tr tr tr tr tr t r tr tr
1.10 The sample space of a single coin toss is{�, � .}The set of possible outcomes int
t r tr tr tr tr tr tr tr tr tr tr t r tr tr tr tr tr tr rt
hree tosses is the product tr tr tr tr
{
{�, �} ×{�, �} ×{�, �}= (�, �, �), (�, �, �), (�, �, �),
tr tr r
t tr tr r
t tr tr r
t t r tr tr tr tr tr tr tr tr tr tr
}
(�, �, � ), (�, �, �), (�, �, � ), (�, �, �), (�, �, � ) tr tr tr tr tr tr tr tr tr tr tr tr tr tr tr tr tr tr
A typical outcome is the sequence (�, �, � ) of two heads followed by a tail.
t r tr tr t r t r t r tr tr tr t r t r tr t r tr t r t r
1.11
� ∩ ℜ+� = {0}
t r tr
t r
tr
where 0 = (0, 0 , . . . , 0) is the production plan using no inputs and producing no outputs. To
tr tr tr tr tr tr tr tr tr tr tr tr tr tr tr tr tr tr t
see this, first note that 0 is a feasible production plan. Therefore, 0 ∈ � . Also,
r t r t r t r t r t r t r t r t r t r t r t r t r t r tr tr t r
0 ∈ ℜ �+ and therefore 0 ∈ � ∩ℜ � . +
tr tr
t r
t r t r tr tr t r tr
tr
To show that there is no other feasible production plan in � ,ℜwe
tr tr
+ assume the contrary. Thattr tr tr tr tr tr tr tr trtrtrtrtr tr tr tr tr tr tr
�
is, we assume there is some feasible production plan y
tr tr tr ∈0ℜ . +This
∖ { }implies the exist tr tr tr tr tr tr tr trtrtrtrtrtrtrtr trtrtrtrtrtr trtrtrt trtr
r tr t r tr tr tr
ence of a plan producing a positive output with no inputs. This technological infeasible,
tr tr tr tr tr tr tr tr tr tr tr tr tr tr
so that �∈/ � . tr tr tr tr tr
1.12 1. Let x ∈ � (�). This implies that (�, − x) ∈ � . Let x′ ≥ x. Then (�,− x′ ) ≤
trtr trtr tr r
t tr trtr trtr trtr trtr tr tr r
t tr trtr trtr tr r
t trt r trtr tr tr
(�, − x) and free disposability implies that (�, − x′ ) ∈ � . Therefore x′ ∈ � (�).
tr tr tr tr tr trtr tr tr tr r
t tr tr tr tr r
t tr
2. Again assume x ∈ � (�). This implies that (�, − x) ∈ � . By free disposal, (�
trt r trtr trtr trt r tr tr trtrtrtr trtr trt r trtr tr trt r tr tr trtrtrtr trtr trt r tr
′ , − x) ∈ � for every �′ ≤ � , which implies that x ∈ � (� ′ ). � (�′ ) ⊇ � (�).
tr tr r
t trt r tr tr tr r
t tr tr trtr tr tr r
t tr trtr tr tr r
t tr
1.13 The domain of “<” is {1, 2}= � and the range is {2,3}⫋ � . tr tr tr tr tr tr r
t tr t r tr tr tr tr tr r
t tr tr
1.14 Figure 1.1. tr
1.15 The relation “is strictly higher than” is transitive, antisymmetric and asymmetri
tr tr tr tr tr tr tr tr tr tr
c.It is not complete, reflexive or symmetric.
rt tr tr tr tr tr tr
2