Solutions Manual for Linear Algebra A Modern Introduction 4th Edition by David Poole 2024 . All Chapters A+
Complete Solution Manual Linear Algebra A Modern Introduction 4th Edition David Poole
Samenvatting Linear Algebra, ISBN: 9781285463247 Lineaire Algebra (5082LIAL6Y)
All for this textbook (6)
Written for
Erasmus Universiteit Rotterdam (EUR)
Econometrics and Operations Research
Matrix Algebra (FEB21019)
All documents for this subject (4)
Seller
Follow
marjavdwind
Reviews received
Content preview
1 Groepsopdrachten
1.1 Week 1
Exercise 1 (Exercise 1). Los de volgende uitdrukking op naar de vector v in
termen van de vectoren a en b:
x + 2a − b = 3(x + a) − 2(2a − b)
.
x + 2a − b = 3(x + a) − 2(2a − b)
x = 3(x + a) − 2(2a − b) − 2a + b
x = 3x + 3a − 2(2a − b) − 2a + b
−2x = 3a − 2(2a − b) − 2a + b
−2x = −3a + 3b
3 3
x= a− b
2 2
Exercise 2 (Exercise 2). Bewijs dat
1 1
u·v= ||u + v||2 − ||u − v||2
4 4
voor alle vectoren u en v in Rn .
1 1 1 1
||u + v||2 − ||u − v||2 = ((u + v) · (u + v)) − ((u − v) · (u − v))
4 4 4 4
1 1
= ((u · u) + 2(u · v) + (v · v)) − ((u · u) − 2(u · v) + (v · v))
4 4
1 1 1 1 1 1
= (u · u) + (u · v) + (v · v) − (u · u) + (u · v) − (v · v)
4 2 4 4 2 4
1 1
= (u · v) + (u · v)
2 2
=u·v
Exercise 3 (Exercise 3). Beschouw de vectoren u en v in Rn , waarbij u 6= 0.
(a) Bewijs dat proju (v) loodrecht staat op v − proju (v).
(b) Gebruik het voorgaande en de stelling van Pythagoras om te bewijzen dat
||proju (v)|| ≤ ||v||.
(c) Bewijs dat de ongelijkheid ||proju (v)|| ≤ ||v|| equivalent is aan de
Cauchy-Schwarz Inequality.
1
, (a)
u · v
u · v
proju (v) · (v − proju (v)) = u· v− u
u · u u · u
u·v u·v u · v
= u·v− u· u
u·u u·u u·u
(u · v)2 u · v 2
= − u·u
u·u u·u
(u · v)2 (u · v)2
= − u·u
u·u (u · u)2
(u · v)2 (u · v)2
= − =0
u·u u·u
And thus are proju (v) and v − proju (v) orthogonal.
(b)
||v||2 = ||proju (v)||2 + ||v − proju (v)||2
||v||2 − ||v − proju (v)||2 = ||proju (v)||2
≥0
Thus there holds that ||v||2 ≥ ||proju (v)||2 and therefore, because lengths
are always nonnegative ||v|| ≥ ||proju (v)||
(c) Cauchy-Schwarz: |u · v| ≤ ||u|| ||v||
||proju (v)|| ≤ ||v|| ⇔
u · v
u ≤ ||v|| ⇔
u·u
u·v
||u|| ≤ ||v|| ⇔
u·u
|u · v|
||u|| ≤ ||v|| ⇒
||u||2
|u · v| ≤ ||u|| ||v||
Exercise 4 (Exercise 4). Los het volgende stelsel van vergelijkingen op:
Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.
Quick and easy check-out
You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.
Focus on what matters
Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!
Frequently asked questions
What do I get when I buy this document?
You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.
Satisfaction guarantee: how does it work?
Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.
Who am I buying these notes from?
Stuvia is a marketplace, so you are not buying this document from us, but from seller marjavdwind. Stuvia facilitates payment to the seller.
Will I be stuck with a subscription?
No, you only buy these notes for $3.75. You're not tied to anything after your purchase.