100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Résumé Fiche de révision math Terminale combinatoire et dénombrement $4.00   Add to cart

Summary

Résumé Fiche de révision math Terminale combinatoire et dénombrement

 30 views  0 purchase
  • Course
  • Institution

Fiche de révision math Terminale combinatoire et dénombrement

Preview 1 out of 1  pages

  • November 15, 2024
  • 1
  • 2024/2025
  • Summary
  • Secondary school
  • Lycée
  • 1
avatar-seller
Combinatoire et dénombrement
Spécialité Terminale



Principe additif Généralisation
Si A et B sont deux ensembles : On peut généraliser A1 , A2 , . . . , An des ensembles finis
✧ Si A et B sont disjoints : Card(A ∪ B) = Card(A) + deux à deux disjoints :
Card(B) n
X
✧ Si A et B sont quelconques : Card(A ∪ B) = Card(A) + Card(A1 ∪ A2 ∪ . . . ∪ An ) = Card(Ai )
Card(B) − Card(A ∩ B) i=1




Produit cartésien Nombre de parties d’un ensemble
Le produit cartésien de A et B est noté A × B n un entier naturel.

Card(A × B) = Card(A) × Card(B) Card(P(E)) = 2n


k-listes Factorielle
L’ensemble de tous les k-listes de E est l’ensemble : n est un entier non nul.
Ek = E × E × . . . × E
| {z } n! = 1 × 2 × . . . × (n − 1) × n
k fois

k
Card(E k ) = [Card(E)] = nk Par convention 0! = 1.



Arrangements Permutations
Le nombre d’arrangements de k éléments parmi n (k < n) Le nombre de permutations d’un ensemble fini non vide
: à n éléments est n!
n!
Akn = n × (n − 1) × . . . × (n − k + 1) =
(n − k)!


Combinaisons Propriétés
Le nombre de combinaisons de p éléments parmi n : ✧ 06p6n: ! !
! n n
n Ap n! =
= n = p n−p
p p! p!(n − p)!
✧ n > 1 et 1 6 p 6 n − 1 :
! ! !
n+1 n n
= +
p+1 p p+1



Triangle de Pascal Binôme de Newton
a et b deux réels et n un entier naturel non nul :
n
!
n
X n p n−p
(a + b) = a b
p=0
p

Coefficients binomiaux :
n
!
X n
= 2n
p=0
p

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller lbgamer. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $4.00. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

73216 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 14 years now

Start selling

Recently viewed by you


$4.00
  • (0)
  Add to cart