100% Zufriedenheitsgarantie Sofort verfügbar nach Zahlung Sowohl online als auch als PDF Du bist an nichts gebunden 4.2 TrustPilot
logo-home
Notizen

Exam notes Statistical Reasoning: Theory and Application (KY)

Bewertung
-
Verkauft
3
seiten
62
Hochgeladen auf
01-12-2024
geschrieben in
2023/2024

Summary of both book and lecture note with SPSS process for each test which can help buyer to prepare well for the final exams for statistics. I have received a with 7.4 for the statistics exam with the help of the note.

Hochschule
Kurs











Ups! Dein Dokument kann gerade nicht geladen werden. Versuch es erneut oder kontaktiere den Support.

Schule, Studium & Fach

Hochschule
Studium
Kurs

Dokument Information

Hochgeladen auf
1. dezember 2024
Anzahl der Seiten
62
geschrieben in
2023/2024
Typ
Notizen
Professor(en)
Drs. s. klinkenberg
Enthält
Alle klassen

Themen

Inhaltsvorschau

Statistical Modeling for Communication Research
NOTES - BOTH BOOK & LECTURE


WEEK 1

Chapter 1: Statistical Inference
● Sample statistics: A number describing a characteristic of a sample.
○ The number of yellow candies in the sample (bag) is the sample statistic
● Expected value/ Expectation: The mean of a probability distribution, such as a sampling
distribution.
○ The mean of the sampling distribution of the sample proportion = the population
proportion

Statistical inference統計推論: generalization from the data collected in a random sample to the
population from which the sample was drawn.
● Offers techniques for making statements about a larger set of observations from data collected for
a smaller set of observations
● Types of statistical inference:
○ Estimation
○ Null hypothesis testing

Sampling distribution: Focuses on samples not on the individual items
● 1 sample = 1 observation
● Definition: All possible sample statistic values and their probabilities or probability densities.
● Sampling distributions are the central element in estimation and null hypothesis testing
● Simulation means that we let a computer draw many random samples from a population
● Sampling distribution contains very many samples
○ The population and the sample consist of the same type of observations.
■ E.g. we are dealing with a sample and a population of candies
○ The sampling distribution is based on a different type of observation, namely samples
■ E.g. sample bags of candies.
1. Draw thousands of samples → Sampling distribution
2. Calculate the mean of sampling distribution (Expected value)
→ The true population value
● The mean of the sampling distribution = The expected value of the sample statistic.
● The mean of the sampling distribution of the sample proportion = The population proportion




1

,Samples requirements:
1. Random samples
a. Definition: A variable with values that depend on chance.
2. Unbiased estimator of the population
3. Continuous vs. Discrete: Probability Density vs. Probabilities
4. Impractical → Too much time for research on a single sample if too many samples were selected

Probability distribution
A Continuous Random variable
● **Probability density: A means of getting the probability that a continuous random variable
(like a sample statistics) falls within a particular range.
● Weight is a continuous variable because we can always think of a new weight between two other
weights
○ E.g. consider two candy weights: 2.8 and 2.81 grams. It is easy to see that there can be a
weight in between these two values, e.g., 2.803 grams




2

, ● Probability of buying a bag with average candy weight between 2.6 and 2.7 grams = 0.064
● Probability of buying a bag with average candy weight of 2.8 or any specific number = 0




**Population mean = Expected value
of the sampling distribution = Average
of the sampling distribution

Unbiased estimator: A sample
statistics for which the expected value
equals the population value.

**A sample is representative of a
population if the variables in the
sample are distributed in the same way
as in the population




A Discrete Random Variable
● **Probabilities: Displayed probabilities always add up to 1
● All possible outcome scores constitute the sampling space
○ Sampling space: All possible sample statistics values.



3

, ■ Example: All values that the sample statistic “Number of yellow candies in the
sample” can take
● The sample statistic is called a random variable → different samples can have different scores




● Tells us all possible samples that we could have
drawn




● Displays the probabilities of a sample bag with a
particular number of yellow candies if 20% of
the candies in the population are yellow


Empirical cycle - Hypothetico-deductive approach
1. Observation
Sparks idea for hypothesis pattern, unexpected event, interesting relation we want to explain
(e.g. personal observation, experience, an imaginary observation)
● Observing relation in one or more instances
● Idea for hypothesis
● Example: Patient is showing post traumatic symptoms
2. Induction
With inductive reasoning relation in specific instances is transformed into general rules
● Inductive inference: Relations holds in specific cases ⇒ Relations holds in all cases
● General rule
● Hypothesis
● Example: Can we diagnose PTSD
3. Deduction




4
$18.61
Vollständigen Zugriff auf das Dokument erhalten:

100% Zufriedenheitsgarantie
Sofort verfügbar nach Zahlung
Sowohl online als auch als PDF
Du bist an nichts gebunden

Lerne den Verkäufer kennen
Seller avatar
karenhuang920905

Lerne den Verkäufer kennen

Seller avatar
karenhuang920905 Universiteit van Amsterdam
Folgen Sie müssen sich einloggen, um Studenten oder Kursen zu folgen.
Verkauft
3
Mitglied seit
2 Jahren
Anzahl der Follower
0
Dokumente
4
Zuletzt verkauft
6 Jahren vor

0.0

0 rezensionen

5
0
4
0
3
0
2
0
1
0

Kürzlich von dir angesehen.

Warum sich Studierende für Stuvia entscheiden

on Mitstudent*innen erstellt, durch Bewertungen verifiziert

Geschrieben von Student*innen, die bestanden haben und bewertet von anderen, die diese Studiendokumente verwendet haben.

Nicht zufrieden? Wähle ein anderes Dokument

Kein Problem! Du kannst direkt ein anderes Dokument wählen, das besser zu dem passt, was du suchst.

Bezahle wie du möchtest, fange sofort an zu lernen

Kein Abonnement, keine Verpflichtungen. Bezahle wie gewohnt per Kreditkarte oder Sofort und lade dein PDF-Dokument sofort herunter.

Student with book image

“Gekauft, heruntergeladen und bestanden. So einfach kann es sein.”

Alisha Student

Häufig gestellte Fragen