100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten
logo-home
Hydrology: Chapter 1 $5.49
In winkelwagen

College aantekeningen

Hydrology: Chapter 1

 0 keer verkocht

Florida State University: Hydrology (Ming Ye) Chapter 1: Water Budget

Voorbeeld 2 van de 6  pagina's

  • 4 december 2024
  • 6
  • 2024/2025
  • College aantekeningen
  • Ming ye
  • Alle colleges
Alle documenten voor dit vak (5)
avatar-seller
betsystewart
Chapter 1: Water Budget
Hydrological cycle and water budget
Precipitation on land (flows down 100)
Evapotranspiration (flows up 61)
Ocean moisture (flows left 39)
Surface discharge (flows right 38)
Groundwater discharge (flows right 1)
Evaporation from oceans (flows up 424)
Precipitation into oceans (flows down 385)
Conservation of Mass
The law of conservation of mass/matter (also known as the lomonosov-lavoisier law) says that the mass of a
closed system will remain constant, regardless of the processes acting inside the system
An equivalent statement is that matter cannot be created/destroyed, although it may be rearranged
Nova’s program on NPR
E = mc^2 (einstein’s big idea)
Water budget
Mass change = inflow-outflow
Dividing everything by time over which the change occurs gives
Mass change rate = mass inflow rate - mass outflow rate
delta(m) = inflow-outflow
delta(m) = change/storage
delta(t) = time
delta(m)/delta(t) = inflow/delta(t)-outflow/delta(t) = i’-o’
Time rate of mass change = mass inflow rate (inflow mass rate) - mass outflow rate
How much water/mass flows in and flows out
Example:
(min/time) x delta(t) - (mout/time) x delta(t)
(5 gallons/day) x 5 days - (3 gallons/day) x 5 days = 10 gallons
delta(m)/delta(t) = (min/t) - (mout/t)
Mass change rate = mass inflow rate - mass outflow rate
Principle of conservation of mass (water budget): for any particular compartment (usually referred to as a
control volume), the time rate of change of mass stored within the compartment is equal to the difference
between the inflow rate and the outflow rate
dm/dt = i’-o’ (mass) if density is constant dv/dt=i-o (volume)
Unit of each item? (mass) steady state: no change in storage over time i-o = 0 (volume)
Control volume: is a volume in space (a geometric entity, independent of mass) through which fluid may flow

, Example:
delta(m)/delta(t) = dm/dt = i’-o’
mass/time
Units and dimensions
We can separate hydrological units into two classes:
Basic measurements that can be directly measured
Length [l] (meter and foot)
Mass [m] (gram and pound)
Time [t] (second and day)
Temperature [q] or [k] (celsius and fahrenheit)
Derived quantities that are not directly measured but are calculated from measured variables using an
equation representing a relationship between variables using an equation representing a relationship
between variables
Velocity ([l/t]
Mass flow rate [m/t]
Volumetric flow rate [l^3/t]
[] stands for dimension; there are a variety of units that correspond to each dimensional quantity
Every quantity should have a unit!
The water budget: an example
dv/dt = i-o
A reservoir, inflow and outflow of every unit time [t] is 2 and 1 unit volume [l^3], respectively
I-o = 2 l^3t^-1 - 1 l^3t^-1 = 1 L^3
The most common system of units employed today is the international system of units (abbreviated si)
We will use SI units in this course; not the english system (e.g. ft and lbs)
A simple unit conversation
Precipitation is typically measured as a volume [l^3] per unit area [l^2] which has dimensions of length [l]
It is more convenient to use depth rather than total volume, because the volumes can be quite large
We are probably more familiar with the statement “20mm of precipitation was recorded at smith airport” than
“smith airport received 20,000m^3 of water”
In the US, the average annual precipitation varies from a minimum at death valley, CA (1.6 inches), to a
maximum on mt. waialeale on the island of Kauai in Hawaii (460 inches). What is the average annual
precipitation (in mm) at each of these locations?
Death valley, CA = 40.64mm
Mt. Waialeale, HI = 11684mm
The global water budget
dv/dt = i’-o’

Dit zijn jouw voordelen als je samenvattingen koopt bij Stuvia:

Bewezen kwaliteit door reviews

Bewezen kwaliteit door reviews

Studenten hebben al meer dan 850.000 samenvattingen beoordeeld. Zo weet jij zeker dat je de beste keuze maakt!

In een paar klikken geregeld

In een paar klikken geregeld

Geen gedoe — betaal gewoon eenmalig met iDeal, creditcard of je Stuvia-tegoed en je bent klaar. Geen abonnement nodig.

Direct to-the-point

Direct to-the-point

Studenten maken samenvattingen voor studenten. Dat betekent: actuele inhoud waar jij écht wat aan hebt. Geen overbodige details!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper betsystewart. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor $5.49. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 75197 samenvattingen verkocht

Opgericht in 2010, al 15 jaar dé plek om samenvattingen te kopen

Begin nu gratis
$5.49
  • (0)
In winkelwagen
Toegevoegd