100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Summary 1BM110 Data Analytics for Business Intelligence Lecture notes $3.15
Add to cart

Summary

Summary 1BM110 Data Analytics for Business Intelligence Lecture notes

 89 views  0 purchase
  • Course
  • Institution

Notice! These notes are unstructured and have not been checked afterwards. Hence the low price. No notes of lecture 6, since the transcript is written in de notes of de slides.

Last document update: 4 year ago

Preview 2 out of 18  pages

  • April 5, 2020
  • April 12, 2020
  • 18
  • 2019/2020
  • Summary
avatar-seller
Contents
1BM110 Lecture notes...........................................................................................................................2
Lecture 1................................................................................................................................................2
Lecture 2................................................................................................................................................3
Data preprocessing............................................................................................................................3
Lecture 3 Guest lecture.........................................................................................................................4
Lecture 4................................................................................................................................................6
Reinforcement learning.....................................................................................................................6
Unsupervised learning.......................................................................................................................6
Supervised learning...........................................................................................................................8
Experimental setup............................................................................................................................8
Lecture 5 Supervised learning................................................................................................................9
Regression.........................................................................................................................................9
Classification models.......................................................................................................................10
Ensemble methods..........................................................................................................................11
Performance measurement.............................................................................................................12
Lecture 7 Guest lecture........................................................................................................................13
Guidelines & methods.....................................................................................................................13
Deep learning...................................................................................................................................14
Amber car........................................................................................................................................15
Lessons learned...............................................................................................................................15
Lecture 8 Text mining..........................................................................................................................16
CRISP-DM.........................................................................................................................................16
Modelling.........................................................................................................................................17

, 1BM110 Lecture notes
Lecture 1
Conventional decision support -> emphasis on deduction:

 Premise: Every swan I have seen is white.
 Conclusion: All swans are white.

BI-> emphasis on induction:

 premise A:all men are mortal
 premise B: Pete is a men
 Conclusion: Pete is mortal.

BI: data-driven decision support

emphasis on induction

Data-> model -> decision

Business/data analytics: degree of intelligence

 Descriptive analytics: use data to understand the past and current performance. What is
going on, what has happened using the data collected.
o Reporting, dashboards, summarization, visualization
o Segmentation: clustering
 Predictive analytics: analyse the past performance in order to predict the future. What will
occur?
o Regression & classification
o Associate rule
o Text mining: unstructured data
 Prescriptive analytics: what should occur?
o Optimization techniques
o Mathematical optimization models: heuristics

Maturity & ambition level matrix

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller TUEIM. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $3.15. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

53008 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 15 years now

Start selling
$3.15
  • (0)
Add to cart
Added