Logic and Set Theory (2IT60) Book Summary 2019
All for this textbook (2)
Written for
Technische Universiteit Eindhoven (TUE)
Psychology and Technology
2ITS60 Logic and Set Theory (2ITS60)
All documents for this subject (1)
Seller
Follow
hildeeschx
Reviews received
Content preview
Contents
Week 1 – Propositional logic.................................................................................................................2
1.1 Syntax..........................................................................................................................................2
1.2 Semantics.....................................................................................................................................3
1.3 Tautologies, contradictions and contingencies............................................................................4
1.4 Contingencies..............................................................................................................................4
1.5 Logical equivalence......................................................................................................................4
1.6 Logical consequence....................................................................................................................4
Lecture 1............................................................................................................................................4
Week 2 – Predicate logic.......................................................................................................................5
2.1 Introduction to predicates and quantifiers..................................................................................5
2.2 Predicates....................................................................................................................................5
2.3 Quantification of unary predicates..............................................................................................6
2.4 Domain of quantification.............................................................................................................6
2.5 Quantification of predicates of higher arity.................................................................................6
2.6 Binding.........................................................................................................................................7
Week 3 – Derivations.............................................................................................................................7
3.1 – Introduction..............................................................................................................................7
3.2 & 3.3 – Implication and conjunction in proofs.............................................................................7
3.4 – Validity, context, correctness of derivations.............................................................................8
3.5, 3.6, 3.7 – Negation and contradiction in derivations (and an example)......................................8
3.8, 3.9 – Disjunction, bi-implication in derivations (and an example)..............................................9
3.10, 3.11 – Universal quantification in derivations (with an example).............................................9
3.12, 3.13 – Existential quantification in derivations (with an example)..........................................10
3.14 – Variables and declarations....................................................................................................10
3.15 – From derivation to proof; case distinction (with an example)..............................................10
Week 4 – Sets......................................................................................................................................11
4.1 Introduction to sets...................................................................................................................11
4.2 Operations on sets.....................................................................................................................11
4.3 Counterexamples: refuting an equality......................................................................................12
4.4 Inclusion, powerset....................................................................................................................12
4.5 Example with subset, equality, complement and difference.....................................................12
4.6 Equality predicate revisited.......................................................................................................13
4.7 Example with empty set, union, difference and equality...........................................................13
4.8 Pairing and Cartesian product....................................................................................................13
,Week 5 – Relations and mappings.......................................................................................................13
5.1 Introduction...............................................................................................................................13
5.2 Equivalence modulo 5 (example of proving equivalence relation)............................................14
5.3 Equivalence classes....................................................................................................................14
5.4 Definition of mapping................................................................................................................15
5.5 Image.........................................................................................................................................16
5.6 Example with image...................................................................................................................17
5.7 Counterexample with image......................................................................................................17
5.8 Source........................................................................................................................................17
5.9 Surjection (mappings)................................................................................................................17
5.10 Injection...................................................................................................................................18
5.11 Example with image and injection...........................................................................................18
5.12 Bijection and inverse (mappings).............................................................................................18
Week 6 – Induction..............................................................................................................................19
6.1 Principle of induction.................................................................................................................19
6.2 First example of induction.........................................................................................................19
6.3 Example of induction with summation......................................................................................19
6.4 Example of induction with divisibility........................................................................................19
6.5 Strong induction........................................................................................................................20
6.6 First example of strong induction..............................................................................................20
6.7 Second example of strong induction..........................................................................................21
6.8 Third example of strong induction (divisibility)..........................................................................21
Tips from the tutorial.......................................................................................................................21
Week 1 – Propositional logic
1.1 Syntax
Proposition: Boolean statement statement that is true or false
, - Can be mathematical, not necessarily
Vocabulary
- Proposition variables
o a,b,c (statements)
- Connectives (see signs in picture)
o Not: negation
o And: conjunction
o Or: disjunction (inclusive)
o If: implication
o If and only if: bi-implication
- Combinations of these form the syntax (of abstract
propositions)
o Using clauses, we can show how combinations of
propositions again form propositions
o Use parentheses around the original propositions when combining them, but omit
those not necessary to prevent ambiguity
1.2 Semantics
- Propositions take in input (propositions) and give an output (truth or false)
- P and Q are the inputs (either true (=T or 1) or false (=F or 0)), which give the following
outputs for the different connectives
- Implication can be regarded as a promise:
o When the condition is true and the consequence is true, the promise is hold (thus
true)
o When the condition is true, the promise does not apply, thus any consequence holds
(thus always true)
o When the condition is true, but the consequence is false, the promise is not hold
(thus false)
- Bi-implication can be regarded as an equal sign
o If p and q have the same value (both 0/false or both 1/true), the output is true
o Otherwise: false
The benefits of buying summaries with Stuvia:
Guaranteed quality through customer reviews
Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.
Quick and easy check-out
You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.
Focus on what matters
Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!
Frequently asked questions
What do I get when I buy this document?
You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.
Satisfaction guarantee: how does it work?
Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.
Who am I buying these notes from?
Stuvia is a marketplace, so you are not buying this document from us, but from seller hildeeschx. Stuvia facilitates payment to the seller.
Will I be stuck with a subscription?
No, you only buy these notes for $3.74. You're not tied to anything after your purchase.