100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Samenvatting - Advanced Econometrics $6.42
Add to cart

Summary

Samenvatting - Advanced Econometrics

 10 views  0 purchase
  • Course
  • Institution

Samenvatting Advanced Econometrics van de Master Econometrics and Operational Research aan de VU. Deze samenvatting omvat de volgende onderwerpen: linear regression, non linear models, stationarity, forecasting, value at risk, impulse response functions, fading memory, ergodicity, bounded moments, ...

[Show more]

Preview 4 out of 32  pages

  • December 13, 2024
  • 32
  • 2024/2025
  • Summary
avatar-seller
Summary

Joya da Silva Patricio Gomes

Advanced Econometrics

Email: joyadasilvapatricio@gmail.com

Student Number: 2806884




December 13, 2024

,Contents

Week 1 1
Chapter 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Recap: Simple Linear Regression . . . . . . . . . . . . . . . . . . . . . . . . . 1
Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Recap: Linear AR(1) Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Difficulties with Nonlinear Models . . . . . . . . . . . . . . . . . . . . . . . . 3
Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Difficulties with Nonlinear Models continued . . . . . . . . . . . . . . . . . . 4
Stationarity problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Week 2 7
Chapter 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Challenges in Analyzing Complex Models . . . . . . . . . . . . . . . . . . . 7
Probabilistic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Value-at-Risk (VaR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Impulse Response Functions (IRFs) . . . . . . . . . . . . . . . . . . . . . . . . 9
Dynamic Portfolio Optimization . . . . . . . . . . . . . . . . . . . . . . . . . 9
Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Stochastic Properties of Dynamic Probability Models . . . . . . . . . . . . . 10
Stationarity, Dependence and Ergodicity . . . . . . . . . . . . . . . . . . . . . 10
Stability of Dynamical Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Fading Memory and Dependence Structures . . . . . . . . . . . . . . . . . . 11
Bounded Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Week 3 12
Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Filters and Data-Generating Processes (DGPs) . . . . . . . . . . . . . . . . . 12
Invertibility of Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Invertibility in Perturbed Dynamic Equations . . . . . . . . . . . . . . . . . . 14
Multivariate Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Chapter 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Extremum Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Criterion Function Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
M-Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Z-Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Existence and Measurability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Week 4 18
Chapter 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2

,Advanced Econometrics Summary

Consistency of Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Uniform Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Stochastic Equicontinuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Identifiable Uniqueness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Strong consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Consistency under Misspecification . . . . . . . . . . . . . . . . . . . . . . . 21
Chapter 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Asymptotic Normality of Estimators . . . . . . . . . . . . . . . . . . . . . . . 21
Extremum Estimators and Asymptotic Normality . . . . . . . . . . . . . . . 21
Well-Behaved Functions and Asymptotic Normality . . . . . . . . . . . . . . 22
Approximate Statistical Inference Using Asymptotic Normality . . . . . . . 22
Estimating the Asymptotic Variance . . . . . . . . . . . . . . . . . . . . . . . 23

Week 5 23
Chapter 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Method Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Least Squares and the Weighted L2-Norm . . . . . . . . . . . . . . . . . . . . 24
MLE and Kullback-Leibler Divergence . . . . . . . . . . . . . . . . . . . . . . 24
Specification Tests with Pseudo-True Parameters . . . . . . . . . . . . . . . . 25
Estimator Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Model Selection Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Ensemble Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Week 6 26
Chapter 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Structural Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Dynamic Pricing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
The Importance of Exogeneity . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Instrumental Variables and A/B Testing . . . . . . . . . . . . . . . . . . . . . 29




CONTENTS 3

, Week 1

Chapter 1
Recap: Simple Linear Regression
The Linear Regression Model
The linear regression model is specified as:

yt = α + βxt + ϵt , (1)

where:

• yt is the dependent variable (also known as the endogenous variable or target).

• xt is the independent variable (also known as the exogenous variable or predictor).

• α is the intercept term.

• β is the slope parameter, which measures the effect of a one-unit change in xt on yt .

• ϵt is the error term, representing unexplained variability.


Assumptions in Linear Regression
For the Ordinary Least Squares (OLS) method to provide meaningful estimates, certain
assumptions must be satisfied:

• Linearity: The relationship between yt and xt is linear.

• Exogeneity: The error term is uncorrelated with the regressors, i.e., E(ϵt | xt ) = 0.

• Homoscedasticity: The variance of the error term is constant, i.e., Var (ϵt | xt ) = σ2 .

• No Perfect Multicollinearity: The regressors are not perfectly collinear.

• Independence: The observations are independently and identically distributed (i.i.d).


Ordinary Least Squares (OLS) Estimation
The OLS method estimates the parameters α and β by minimizing the sum of squared
residuals:
T
(α̂, β̂) = arg min ∑ (yt − α − βxt )2 . (2)
α,β t=1


1

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller joyadasilva. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $6.42. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

52510 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 14 years now

Start selling
$6.42
  • (0)
Add to cart
Added